[1]
Frenklach M., Clary D.W., Gardiner Jr. W.C., Stein S.E., Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium (International) on Combustion, 1985, 20: 887–901.
[2]
Frenklach M., Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4: 2028–2037.
[3]
Lindstedt R.P., Skevis G., Chemistry of acetylene flames. Combustion Science and Technology, 1997, 125: 73–137.
[4]
Yuan W.H., Li Y.Y., Dagaut P., Wang Y.Z., Wang Z.D., Qi F., A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion. Combustion and Flame, 2017, 186: 178–192.
[5]
Banerjee S., Tangko R., Sheen D.A., Wang H., Bowman C.T., An experimental and kinetic modeling study of n-dodecane pyrolysis and oxidation. Combustion and Flame, 2016, 163: 12–30.
[6]
Jin H.F, Frassoldati A., Wang Y.Z., Zhang X.Y., Zeng M.R., Li Y.Y., Qi F., Cuoci A., Faravelli T., Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame, 2015, 162: 1692–1711.
[7]
Russo C., Ciajolo A., D'Anna A., Sirignano M., Modelling analysis of PAH and soot measured in a premixed toluene-doped methane flame. Fuel, 2018, 234: 1026–1032.
[8]
Dagaut P., Cathonnet M., The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science, 2006, 32: 48–92.
[9]
Chen B.J., Togbé C., Selim H., Dagaut P., Sarathy S.M., Quantities of interest in jet stirred reactor oxidation of a high-octane gasoline. Energy & Fuels, 2017, 31: 5543–5553.
[10]
Yuan W.H., Li Y.Y., Dagaut P., Yang J.Z., Qi F., Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame, 2015, 162: 22–40.
[11]
Yuan W.H., Li Y.Y., Dagaut P., Yang J.Z., Qi F., Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame, 2015, 162: 3–21.
[12]
Westmoreland P.R., Howard J.B., Longwell J.P., Tests of published mechanisms by comparison with measured laminar flame structure in fuel-rich acetylene combustion. Symposium (International) on Combustion, 1988, 21: 773–782.
[13]
Miller J.A., Volponi J.V., Durant J.J.L., Goldsmith J.E.M., Fish G.A., Kee R.J., The structure and reaction mechanism of rich, non-sooting C2H2/O2/Ar flames. Symposium (International) on Combustion, 1991, 23: 187–194.
[14]
Bastin E., Delfau J.L., Reuillon M., Vovelle C., Warnatz J., Experimental and computational investigation of the structure of a sooting C2H2-O2-Ar flame. Symposium (International) on Combustion, 1989, 22: 313–322.
[15]
Hu B., Koylu U., Size and morphology of soot particulates sampled from a turbulent nonpremixed acetylene flame. Aerosol Science and Technology, 2004, 38: 1009–1018.
[16]
Lamprecht A., Atakan B., Kohse-Höinghaus K., Fuel-rich propene and acetylene flames: a comparison of their flame chemistries. Combustion and Flame, 2000, 122: 483–491.
[17]
Warnatz J., Bockhorn H., Möser A., Wenz H.W., Experimental investigations and computational simulation of acetylene-oxygen flames from near stoichiometric to sooting conditions. Symposium (International) on Combustion, 1982, 19: 197–209.
[18]
Jachimowski C.J., An experimental and analytical study of acetylene and ethylene oxidation behind shock waves. Combustion and Flame, 1977, 29: 55–66.
[19]
DoutÉ C., Delfau J.L., Vovelle C., Reaction mechanism for arornatics formation in a low pressure, premixed acetylene-oxygene/argon flame. Combustion Science and Technology, 1994, 103: 153–173.
[20]
Eiteneer B., Frenklach M., Experimental and modeling study of shock-tube oxidation of acetylene. International Journal of Chemical Kinetics, 2003, 35: 391–414.
[21]
Sztucki M., Narayanan T., Beaucage G., In situ study of aggregation of soot particles in an acetylene flame by small-angle x-ray scattering. Journal of Applied Physics, 2007, 101: 114304.
[22]
Stubbeman R.F., Gardiner Jr. W.C., Shock tube study of the acetylene-oxygen reaction. Journal of Physical Chemistry, 1964, 68: 3169–3176.
[23]
Li Y.Y., Zhang L.D., Tian Z.Y., Yuan T., Zhang K.W., Yang B., Qi F., Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes. Proceedings of the Combustion Institute, 2009, 32: 1293–1300.
[24]
Shen X.B., Yang X.L., Santner J., Sun J.H., Ju Y.G., Experimental and kinetic studies of acetylene flames at elevated pressures. Proceedings of the Combustion Institute, 2015, 35: 721–728.
[25]
Hidaka Y., Hattori K., Okuno T., Inami K., Abe T., Koike T., Shock-tube and modeling study of acetylene pyrolysis and oxidation. Combustion and Flame, 1996, 107: 401–417.
[26]
Frenklach M., Taki S., Durgaprasad M.B., Matula R.A., Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene. Combustion and Flame, 1983, 54: 81–101.
[27]
Hidaka Y., Eubank C.S., Gardiner Jr. W.C., Hwang S.M., Shock tube and modeling study of acetylene oxidation. The Journal of Chemical Physics, 1984, 88: 1006–1012.
[28]
Hwang S.M., Gardiner Jr. W.C., Frenklach M., Hidaka Y., Induction zone exothermicity of acetylene ignition. Combustion and Flame, 1987, 67: 65–75.
[29]
Frenklach M., Wang H., Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion, 1991, 23: 1559–1566.
[30]
Miller J.A., Melius C.F., Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combustion and Flame, 1992, 91: 21–39.
[31]
Blanquart G., Pepiot-Desjardins P., Pitsch H., Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame, 2009, 156: 588–607.
[32]
Wang H., Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 2011, 33: 41–67.
[33]
Alzueta M.U., Borruey M., Callejas A., Millera A., Bilbao R., An experimental and modeling study of the oxidation of acetylene in a flow reactor. Combustion and Flame, 2008, 152: 377–386.
[34]
Tan Y.W., Dagaut P., Cathonnet M., Boettner J.C., Acetylene oxidation in a JSR from 1 to 10 atm and comprehensive kinetic modeling. Combustion Science and Technology, 1994, 102: 21–55.
[35]
Gimenez-Lopez J., Rasmussen C.T., Hashemi H., Alzueta M.U., Gao Y., Marshall P., Goldsmith C.F., Glarborg P., Experimental and kinetic modeling study of C2H2 oxidation at high pressure. International Journal of Chemical Kinetics, 2016, 48: 724–738.
[36]
Marshall P., Leung C., Gimenez-Lopez J., Rasmussen C.T., Hashemi H., Glarborg P., Abian M., Alzueta M., The C2H2 + NO2 reaction: Implications for high pressure oxidation of C2H2/NOx mixtures. Proceedings of the Combustion Institute, 2019, 37: 469–476.
[37]
Wang B.Y., Liu Y.X., Weng J.J., Glarborg P., Tian Z.Y., New insights in the low-temperature oxidation of acetylene. Proceedings of the Combustion Institute, 2017, 36: 355–363.
[38]
Liu H., Geng C., Yang Z., Cui Y., Yao M., Effect of wall temperature on acetylene diffusion flame-wall interaction based on optical diagnostics and CFD simulation. Energies, 2018, 11: 1264.
[39]
Tian D.X., Liu Y.X., Wang B.Y., Cao C.C., Liu Z.K., Zhai Y.T., Zhang Y., Yang J.Z., Tian Z.Y., Pyrolysis study of iso-propylbenzene with photoionization and molecular beam mass spectrometry. Combustion and Flame, 2019, 209: 313–321.
[40]
Liu H., Cui Y., Chen B., Kyritsis D.C., Tang Q., Feng L., Wang Y., Li Z., Geng C., Yao M., Effects of flame temperature on PAHs and soot evolution in partially premixed and diffusion flames of a diesel surrogate. Energy & Fuels, 2019, 33: 11821–11829.
[41]
Dagaut P., Cathonnet M., Boettner J.C., Gaillard F., Kinetic modeling of ethylene oxidation. Combustion and Flame, 1988, 71: 295–312.
[42]
Scanion J.T., Willis D.E., Calculation of flame ionization detector relative response factors using the effective carbon number concept. Journal of Chromatographic Science, 1985, 23: 333–340.
[43]
Material A.S.f.T.A., ASTM D7504-2012 standard test method for trace impurities in monocyclic aromatic hydrocarbons by gas chromatography and effective carbon number. ASTM International, West Conshohocken, 2012.
[44]
Liu Y.X., Richter S., Naumann C., Braun-Unkhoff M., Tian Z.Y., Combustion study of a surrogate fuel. Combustion and Flame, 2019, 202: 252–261.
[45]
Dias V., Vandooren J., Jeanmart H., An experimental and modeling study of the addition of acetone to H2/O2/Ar flames at low pressure. Proceedings of the Combustion Institute, 2015, 35: 647–653.
[46]
Wang H., Frenklach M., Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals. The Journal of Physical Chemistry. 1994, 98: 11465–11489.
[47]
Chemkin-Pro 15092, Reaction Design, San Diego, 2009.
[48]
Chen J.T., Yu D., Li W., Chen W.Y., Song S.B., Xie C., Yang J.Z., Tian Z.Y., Oxidation study of benzaldehyde with synchrotron photoionization and molecular beam mass spectrometry. Combustion and Flame, 2020, 220: 455–467.