[1] Tuthill R., Humid air turbine cycle technology development program. 2002, Pratt & Whitney, US.
[2] Jonsson M., Yan J., Humidified gas turbines—a review of proposed and implemented cycles. Energy, 2005, 30(7): 1013–1078.
[3] Terhaar S., Oberleithner K., Paschereit C.O., Impact of steam-dilution on the flame shape and coherent structures in swirl-stabilized combustors. Combustion Science and Technology, 2014, 186(7): 889–911.
[4] Göke S., Füri M., Bourque G., et al., Influence of steam dilution on the combustion of natural gas and hydrogen in premixed and rich-quench-lean combustors. Fuel Processing Technology, 2013, 107(1): 14–22.
[5] Stathopoulos P., Kuhn P., Wendler J., et al., Emissions of a wet premixed flame of natural gas and a mixture with hydrogen at high pressure. Journal of Engineering for Gas Turbines and Power, 2017, 139(4): 041507.
[6] Li M., Tong Y., Thern M., et al., Influence of the steam addition on premixed methane air combustion at atmospheric pressure. Energies, 2017, 10(7): 1070.
[7] Terhaar S., Identification and modeling of coherent structures in swirl stabilized combustors at dry and steam diluted conditions. 2015, Technische Universität Berlin.
[8] Zhang K., Dybe S., Shen Y., et al., Experimental and numerical investigation of ultra-wet methane combustion technique for power generation. ASME Turbo Expo: Power for Land, Sea, and Air, 2020. DOI: 10.1115/1.4048907
[9] Lückerath R., Meier W., Aigner M., FLOX® Combustion at high pressure with different fuel compositions. Journal of Engineering for Gas Turbines and Power, 2008, 130(1): 011505.
[10] Cavaliere A., de Joannon M., Mild combustion. Progress in Energy and Combustion Science, 2004, 30(4): 329– 366.
[11] Hasemann S., Huber A., Naumann C., et al., Investigation of a FLOX ® -Based combustor for a micro gas turbine with exhaust gas recirculation. ASME Turbo Expo 2017: Power for Land, Sea and Air, 2017.
DOI: 10.1115/GT2017-64396
[12] Karyeyen S., Feser J.S., Jahoda E., et al., Development of distributed combustion index from a swirl-assisted burner. Applied Energy, 2020, 268: 114967.
[13] Tu Y., Xu M., Zhou D., et al., CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres. Applied Energy, 2019, 240(1): 1003–1013.
[14] Sabia P., de Joannon M., On H2-O2 oxidation in several bath gases. International Journal of Hydrogen Energy, 2020, 45(15): 8151–8167.
[15] Sabia P., Lavadera M.L., Giudicianni P., et al., CO2 and H2O effect on propane auto-ignition delay times under mild combustion operative conditions. Combustion and Flame, 2014, 162(3): 533–543.
[16] Sabia P., Lavadera M.L., Sorrentino G., et al., H2O and CO2 dilution in MILD combustion of simple hydrocarbons. Flow, Turbulence and Combustion, 2016, 96(2): 433–448.
[17] Göke S., Ultra-wet combustion: An experimental and numerical study. 2012, Technische Universtität Berlin.
[18] Shu Z., Dai C., Li P., et al., Nitric oxide of MILD combustion of a methane jet flame in hot oxidizer coflow: Its formations and emissions under H2O, CO2 and N2 dilutions. Fuel, 2018, 234(1): 567–580.
[19] Miyauchi T., Mori Y., Yamaguchi T., Effect of steam addition on no formation. Symposium on Combustion, 1981, 18(1): 43–51.
[20] Zhao D., Yamashita H., Kitagawa K., et al., Behavior and effect on NOx formation of OH radical in methane-air diffusion flame with steam addition. Combustion and Flame, 2002, 130(4): 352–360.
[21] Bhargava A., Colket M., Sowa W., et al., An experimental and modeling study of humid air premixed flames. Journal of Engineering for Gas Turbines and Power, 2000, 122(3): 405–411.
[22] Ariemma G.B., Sabia P., Sorrentino G., et al., Influence of water addition on MILD ammonia combustion performances and emissions. Proceedings of the Combustion Institute, 2021, 38(4): 5147–5154.
[23] Hermann F., Klingmann J., Gabrielsson R., Computational and experimental investigation of emissions in a highly humidified premixed flame. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference.
DOI: 10.1115/GT2003-38337
[24] Abián M., Giménez-López J., Bilbao R., et al., Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and modeling. Proceedings of the Combustion Institute, 2011, 33(1): 317–323.
[25] Göke S., Paschereit C.O., Influence of steam dilution on nitrogen oxide formation in premixed methane/hydrogen flames. Journal of Propulsion and Power, 2012, 29(1): 249–260.
[26] Zhang H., Zhang Z., Xiong Y., et al., Experimental and numerical investigations of MILD combustion in a model combustor applied for gas turbine. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. 2018. DOI: 10.1115/GT2018-76253
[27] Lee J., Santavicca D., Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. Journal of propulsion power, 2003, 19(5): 735–750.
[28] Arghode V.K., Gupta A.K., Bryden K.M., High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Applied Energy, 2012, 92(1): 822–830.
[29] Zhu Z., Xiong Y., Zheng X., et al., Experimental and numerical study of the effect of fuel/air mixing modes on NOx and CO emissions of MILD combustion in a boiler burner. Journal of Thermal Science, 2021, 30(2): 656–667.
[30] Najm H.N., Knio O.M., Paul P.H., et al., A study of flame observables in premixed methane - Air flames. Combustion Science and Technology, 1998, 140(1–6): 369–403.
[31] Ikeda Y., Kojima J., Nakajima T., et al., Measurement of the local flamefront structure of turbulent premixed flames by local chemiluminescence. Proceedings of the Combustion Institute, 2000, 28(1): 343–350.
[32] Lee J.G., Santavicca D.A., Experimental diagnostics for the study of combustion instabilities in lean premixed combustors. Journal of Propulsion and Power, 2003, 19(5): 735–750.
[33] Yon S., Sautet J.-C., Flame lift-off height, velocity flow and mixing of hythane in oxy-combustion in a burner with two separated jets. Applied Thermal Engineering, 2012, 32(1): 83–92.
[34] Bower E.H., Schwärzle A., Grimm F., Zornek T., Kutne P., Experimental analysis of a micro gas turbine combustor optimized for flexible operation with various gasous fuel compositions. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. 2019. DOI: 10.1115/GT2019-90183
[35] Prakash V., Parametric emission prediction model in gas turbines with exhaust gas recirculation. Delft University of Technology, Holland, 2017.
[36] Zhu Z., Xiong Y., Zhang Z., Effects of inlet air temperature and steam addition on the realization of MILD combustion for humid air turbine. GPPS 2021. Xi’an, China. DOI: 10.33737/gpps21-tc-162