[1] Hada S., Thole K.A., Computational study of a midpassage gap and upstream slot on vane endwall film cooling. ASME Paper No. GT-2006-91067.
[2] Han J.C., Dutta S., Ekkad S., Gas turbine heat transfer and cooling technology, 2nd ed. Taylor & Francis Group CRC Press, New York, 2012.
[3] Chyu M.K., Heat transfer near turbine nozzle endwall. Annals of the New York Academy of Science, 2001, 93: 427–436.
[4] Schreiner B.D.J., Wilson M., Li Y.S., Effect of purge on the secondary flow-field of a gas turbine blade-row. Journal of Turbomachinery, 2020, 142: 101006.
[5] Thrift A.A., Thole K.A., Hada S., Effects of orientation and position of the combustor-turbine interface on the cooling of a vane endwall. ASME Journal of Turbomachinery, 2012, 134(6): 061019.
[6] Xu Q.Z., Du Q., Wang P., Liu J., Liu G., Computational investigation of film cooling and secondary flow on turbine endwall with coolant jet from upstream interrupted slot. International Journal of Heat and Mass Transfer, 2018, 123: 285–296.
[7] Tao Z., Yao Y.J., Zhu P.Y., Song L.M., Li J., Experimental and numerical study on film cooling effectiveness of an annular cascade endwall with different slot configuration. International Journal of Thermal Science, 2020, 158: 106517.
[8] Kim J., Sohn H., Choi S., Effect of misalignment at 2nd vane endwall on heat transfer with purge flow. International Journal of Heat and Mass Transfer, 2021, 170: 121034.
[9] Du K., Li Z.G., Li J., Effects of trenched film hole configurations on the endwall film cooling and suction side phantom cooling. Journal of Thermal Science, 2019, 28: 905–914.
[10] Du K., Li J., Sunden B., Effects of the cooling configurations layout near the first-stage vane leading edge on the endwall cooling and phantom cooling of the vane suction side surface. International Journal of Heat and Mass Transfer, 2018, 123: 1021–1034.
[11] Zhang Y., Yuan X., Turbine endwall film cooling with combustor-turbine interface gap leakage flow: Effect of incidence angle. Journal of Thermal Science, 2013, 22: 135–144.
[12] Chen Z.Y., Su X.R., Yuan X., Cooling performance of the endwall vertical hole considering the interaction between cooling jet and leading-edge horseshoe vortex. Journal of Thermal Science, 2022, 31: 1696–1708.
[13] Langston L.S., Crossflows in a turbine cascade passage. Journal Engineering for Gas Turbines and Power, 1980, 102(4): 866–874.
[14] Sharma O.P., Butler T.L., Predictions of endwall losses and secondary flows in axial flow turbine cascades. ASME Journal of Turbomachinery, 1987, 109(2): 229–236.
[15] Wang H.P., Olson S.J., Goldstein R.J., Eckert E.R.G., Flow visualization in a linear turbine cascade of high performance turbine blades. ASME Journal of Turbomachinery, 1997, 119(1): 1–8.
[16] Friedrichs S., Hodson H.P., et al., Distribution of film-cooling effectiveness on a turbine endwall measured using the ammonia and diazo technique. ASME Journal of Turbomachinery, 1996, 118(4): 613–621.
[17] Friedrichs S., Endwall film cooling in axial flow turbines. University of Cambridge, UK, 1997.
[18] Chowdhury N.H., Shiau C.C., Han J.C., Zhang L., Moon H.K., Turbine vane endwall film cooling with slashface leakage and discrete hole configuration. ASME Journal of Turbomachinery, 2017, 139(6): 061003.
[19] Rose M.G., Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine. Proceedings of the ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. Volume 1: Turbomachinery. The Hague, Netherlands. June 13–16, 1994, V001T01A090.
[20] Chen P.T., Wang L., Li X.Y., Ren J., Jiang H.D., Effect of axial turbine non-axisymmetric endwall contouring on film cooling at different locations. International Journal of Heat and Mass Transfer, 2019, 147: 118995.
[21] Tao Z., Guo Z.D., Yu B.Y., Song L.M., Li J., Aero-thermal optimization of a gas turbine blade endwall with non-axisymmetric contouring and purge flow. International Journal of Heat and Mass Transfer, 2021, 178: 121626.
[22] Wang Z.D., Feng Z.P., Zhang X.B., et al., Improving cooling performance and robustness of NGV endwall film cooling design using micro-scale ribs considering incidence effects. Energy, 2022, 253: 124203.
[23] Miao X., Zhang Q., Atkin C., Sun Z.Z., Li Y.S., Improving purge air cooling effectiveness by engineered end-wall surface structures-Part I: Duct flow. ASME Journal of Turbomachinery, 2018, 140(9): 091001.
[24] Miao X., Zhang Q., Atkin C., Sun Z.Z., Li Y.S., Improving purge air cooling effectiveness by engineered end-wall surface structures-Part II: Turbine cascade. ASME Journal of Turbomachinery, 2018, 140(9): 091002.
[25] Cardwell N.H., Sundaram N., Thole K.A., The effects of varying the combustor-turbine gap. ASME Journal of Turbomachinery, 2007, 129(4): 756–764.
[26] Du K., Li J., Numerical study on the effects of slot injection configuration and endwall alignment mode on the film cooling performance of vane endwall. International Journal of Heat and Mass Transfer, 2016, 98: 768–777.