[1] Zhou J., Wang X., Li J., Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge. International Journal of Heat and Mass Transfer, 2019, 134(5): 1101–1118.
[2] Masip Y., Campo A., Nuñez S.M., Experimental analysis of the thermal performance on electronic cooling by a combination of cross-flow and an impinging air jet. Applied Thermal Engineering, 2020, 167: 114779.
[3] Marco P.D., Frigo S., Gabbrielli R., Pecchia S., Mathematical modelling and energy performance assessment of air impingement drying systems for the production of tissue paper. Energy, 2016, 114: 201–213.
[4] Alamir M., Witrant E., Valle G.D., Rouaud O., Josset C., Boillereaux L., Estimation of energy saving thanks to a reduced-model-based approach: example of bread baking by jet impingement. Energy, 2013, 53: 74–82.
[5] Chauhan R., Thakur N.S., Investigation of the thermohydraulic performance of impinging jet solar air heater. Energy, 2014, 68: 255–261.
[6] Webb B.W., Ma C.F., Single-phase liquid jet impingement heat transfer. Advances in Heat Transfer, 1995, 26(08): 105–217.
[7] Shih T., Thamire C., Sung C., Ren A., Literature survey of numerical heat transfer (2000-2009): Part 1. Numerical Heat Transfer, Part A: Applications, 2010, 57(3–4): 159–296.
[8] Chiriac V.O., Ortega A., A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. International Journal of Heat and Mass Transfer, 2002, 45(6): 1237–1248.
[9] Lee H.G., Yoon H.S., Ha M.Y., A numerical investigation on the fluid flow and heat transfer in the confined impinging slot jet in the low Reynolds number region for different channel heights. International Journal of Heat and Mass Transfer, 2008, 51(15–16): 4055–4068.
[10] Varieras D., Brancher P., Giovannini A., Self-sustained oscillations of a confined impinging jet. Flow, Turbulence and Combustion, 2007, 78(1): 1–5.
[11] Uzol O., Camci C., Experimental and computational visualization and frequency measurements of the jet oscillation inside a fluidic oscillator. Journal of Visualization, 2002, 5(3): 263–272.
[12] Lee G.B., Kuo T.Y., Wu W.Y., A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate. Experimental Thermal and Fluid Science, 2002, 26(5): 435–444.
[13] Durst F., Pereira J., Tropea C., The plane Symmetric sudden-expansion flow at low Reynolds numbers. Journal of Fluid Mechanics, 1993, 248: 567–581.
[14] Liu S., Wang B., Wan Z., Ma D., Sun D., Bifurcation analysis of laminar isothermal planar opposed-jet flow. Computers & Fluids, 2016, 140: 72–80.
[15] Chomaz J., Fully nonlinear dynamics of parallel wakes. Journal of Fluid Mechanics, 2003, 495: 57–75.
[16] Cho J.R., Numerical observations of a bifurcating plane impinging jet in a confined channel. Journal of Visualization, 2006, 9(4): 361–362.
[17] Lee D.H., Bae J.R., Park H.J., Lee J.S., Ligrani P., Confined, milliscale unsteady laminar impinging slot jets and surface Nusselt numbers. International Journal of Heat and Mass Transfer, 2011, 54(11–12): 2408–2418.
[18] Lee D.H., Park H.J., Ligrani P., Milliscale confined impinging slot jets: Laminar heat transfer characteristics for an isothermal flat plate. International Journal of Heat and Mass Transfer, 2012, 55(9–10): 2249–2260.
[19] Chatterjee A., Tarbell J., Laminar stability and heat transport in high aspect ratio planar confined impinging flows. International Journal of Heat and Mass Transfer, 2019, 137: 534–544.
[20] Chatterjee A., Fabris D., Planar non-Newtonian confined laminar impinging jets: Hysteresis, linear stability, and periodic flow. Physics of Fluids, 2017, 29(10): 103103.
[21] Meliga P., Chomaz J.M., Global modes in a confined impinging jet: application to heat transfer and control. Theoretical and Computational Fluid Dynamics, 2011, 25: 170–193.
[22] Fluent, Theory Guide. A.N.S.Y.S., Release 17.0, 2016.
[23] Schmid P.J., Sesterhenn J., Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656(10): 5–28.
[24] Semeraro O., Bellani G., Lundell F., Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Experiments in Fluids, 2012, 53(5): 1203–1220.
[25] Schmid P.J., Li L., Juniper M.P., Pust O., Applications of the dynamic mode decomposition. Theoretical and Computational Fluid Dynamics, 2011, 25(1): 249–259.
[26] Schmid P.J., Violato D., Scarano F., Decomposition of time-resolved tomographic PIV. Experiments in Fluids, 2012, 52(6): 1567–1579.
[27] Basley J., Pastur L.R., Delprat N., Lusseyran F., Space-time aspects of a three-dimensional multi-modulated open cavity flow. Physics of Fluids, 2013, 25(6): 695–719.
[28] Lusseyran F., Gueniat F., Basley J., Douay C.L., Pastur L.R., Faure T.M., Schmid P.J., Flow coherent structures and frequency signature: Application of the dynamic modes decomposition to open cavity flow. Journal of Physics: Conference Series, 2011, 318(4): 042036.
[29] Mizuno Y., Duke D., Atkinson C., Soria J., Investigation of wall-bounded turbulent flow using Dynamic mode decomposition. Journal of Physics: Conference Series, 2011, 318(4): 042040.
[30] Ostoich C.M., Bodony D.J., Geubelle P.H., Interaction of a Mach 2.25 turbulent boundary layer with a fluttering panel using direct numerical simulation. Physics of Fluids, 2013, 25(11): 171–186.
[31] Sayadi T., Schmid P.J., Nichols J.W., Moin P., Reduced-order representation of near-wall structures in the late transitional boundary layer. Journal of Fluid Mechanics, 2014, 748: 278–301.
[32] Lee J.H., Seena A., Lee S.H., Sung H.J., Turbulent boundary layers over rod- and cube-roughened walls. Journal of Turbulence, 2012, 13(40): 1–26.
[33] Tu J., Rowley C., Aram E., Mittal R., Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2011.
[34] Pan C., Yu D., Wang J., Dynamical mode decomposition of Gurney flap wake flow. Theoretical and Applied Mechanics Letters, 2011, 1(1): 012002.
[35] Iungo G.V., Santoni-Ortiz C., Abkar M., Porte-Agel F., Rotea M.A., Leonardi S., Data-driven reduced order model for prediction of wind turbine wakes. Journal of Physics: Conference Series, 2015, 625: 012009.
[36] Dunne R., Mckeon B.J., Dynamic stall on a pitching and surging airfoil. Experiments in Fluids, 2015, 56(8): 157.
[37] Rowley C., Mezic I., Bagheri S., Schlatter P., Spectral analysis of nonlinear flows. Journal of Fluid Mechanics, 2009, 641: 115–127.
[38] Iyer P.S., Mahesh K., A numerical study of shear layer characteristics of low-speed transverse jets. Journal of Fluid Mechanics, 2016, 790: 275–307.
[39] Seena A., Sung H.J., Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations. International Journal of Heat and Fluid Flow, 2011, 32(6): 1098–1110.
[40] Brouilliot D., Étude experimentale de l’aérothermique et de la dynamique des jets impactants. Ph.D. thesis, Université de Toulouse III, France, 2016.