[1] Mao Y., Dang T.Q., Simple approach for modeling fan systems with a computational-fluid-dynamics-based body-force model. Journal of Propulsion and Power, 2020, 36(5): 1–13. DOI: 10.2514/1.B37742.
[2] Wu C.H., A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial, and mixed-flow types. Journal of Fluids Engineering, 1952, 74(8): 1363–1380.
[3] Qiu X., Japikse D., Zhao J., Anderson M.R., Analysis and validation of a unified slip factor model for impellers at design and off-design conditions. Journal of Turbomachinery, 2011, 133(4): 041018. DOI: 10.1115/1.4003022.
[4] Simon J.F., Léonard O., Modeling of 3-D losses and deviations in a throughflow analysis tool. Journal of Thermal Science, 2007, 16(3): 208–214. DOI: 10.1007/s11630-007-0208-x.
[5] Lieblein S., Incidence and deviation-angle correlations for compressor cascades. Journal of Basic Engineering, 1960, 82(3): 575–584. DOI: 10.1115/1.3662666.
[6] Lieblein S., Experimental flow in 2D cascades. 1965, NASA TP-SP36.
[7] Dixon S.L., Hall C.A., Fluid mechanics and thermodynamics of turbomachinery, 7th Ed., 2014, Butterworth-Heinemann, Oxford, UK.
[8] Cetin M., Uecer A.S., Hirsch C.H.A.R.L.E.S., Serovy G.K., Application of modified loss and deviation correlations to transonic axial compressors. Advisory Group for Aerospace Research and Development (AGARD), 1987, Neuilly-Sur-Seine, France.
[9] König W.M., Hennecke D.K., Fottner L., Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part I—A model for subsonic flow. Journal of Turbomachinery, 1996, 118(1): 73–80. DOI: 10.1115/1.2836609.
[10] König W.M., Improved blade profile loss and deviation angle models for advanced transonic compressor bladings: Part II—A model for supersonic flow. Journal of Turbomachinery, 1996, 118(1): 81–87. DOI: 10.1115/1.2836610.
[11] Wennestrom A.J., Design of highly loaded axial-flow fans and compressors. 2000, Concepts ETI, White River Junction, Vermont, USA.
[12] Johnsen I.A., Bullock R.O., Aerodynamic design of axial-flow compressors. 1965, NASA SP-36.
[13] Raj R., Lakshminarayana B., Characteristics of the wake behind a cascade of airfoils. Journal of Fluid Mechanics, 1973, 61(4): 707–730. DOI: 10.1017/S002211207300090X.
[14] Denton J.D., The calculation of three-dimensional viscous flow through multistage turbomachines. Journal of Turbomachinery, 1992, 114(1): 18–26. DOI: 10.1115/1.2927983.
[15] Mao Y., Body force modeling for engine inlet fan system. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, 2018.
[16] Mao Y., Dang T.Q., A three-dimensional body-force model for nacelle-fan systems under inlet distortions. Aerospace Science and Technology, 2020, 106: 106085. DOI: 10.1016/j.ast.2020.106085.
[17] Jennions I.K., Stow P., A quasi-three-dimensional turbomachinery blade design system: part I—throughflow analysis. Journal Engineering for Gas Turbines and Power, 1985, 107(2): 301–307. DOI: 10.1115/1.3239715.
[18] Adamczyk J.J., Model equation for simulating flows in multistage turbomachinery. 1984, NASA TM-86869.
[19] Schlichting H., Boundary layer theory. 2017, Springer-Verlag, Berlin, Heidelberg.
[20] Damle S.V., Dang T.Q., Reddy D.R., Throughflow method for turbomachines applicable for all flow regimes. Journal Engineering for Gas Turbines and Power, 1997, 119(2): 256–262. DOI: 10.1115/1.2841108
[21] Sturmayr A., Hirsch C., Throughflow model for design and analysis integrated in a 3D Navier-Stokes solver. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(4): 263–273.
[22] Emery J.C., Herrig L.J., Erwin J.R., Felix A.R., Systematic two-dimensional cascade tests of NACA 65-Series compressor blades at low speed. 1958, NACA Report No. 1368.
[23] Sarimurat M.N., Dang T.Q., An analytical model for boundary layer control via steady blowing and its application to NACA-65-410 cascade. Journal Engineering for Gas Turbines and Power, 2014, 136(6): 061011. DOI: 10.1115/1.4025585.
[24] Reid L., Moore R.D., Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor. 1978, NASA TP-1337.
[25] Seshadri P., Parks G.T., Shahpar S., Leakage uncertainties in compressors: the case of Rotor 37. Journal of Propulsion and Power, 2015, 31(1): 456–466. DOI: 10.2514/1.B35039.
[26] Dalbert P., Wiss D.H., Numerical transonic flow field predictions for NASA compressor Rotor 37. ASME Turbo Expo: Power for Land, Sea, and Air, 1995, Paper No. 95-GT-326. DOI: 10.1115/95-GT-326.
[27] Denton, J.D., Lessons from Rotor 37. Journal of Thermal Science, 1997, 6(1): 1–13. DOI: 10.1007/s11630-997-0010-9.
[28] Ameri, A., NASA Rotor 37 CFD code validation. 2010, NASA CR-2010-216235.
[29] Suder K.L., Experimental investigation of the flow field in a transonic, axial flow compressor with respect to the development of blockage and loss. 1996, NASA TM-107310.
[30] Bosman C., Marsh H., An improved method for calculating the flow in turbo-machines, including a consistent loss model. Journal of Mechanical Engineering Science, 1974, 16(1): 25–31. DOI: 10.1243/jmes_jour_1974_016_006_02.