[1] Christian B., Frederik Z., et al., Description of the DTU 10 MW reference wind turbine. DTU Wind Energy Report-I-0092, 2013, pp. 1–138.
DOI: 10.1017/CBO9781107415324.004.
[2] Sedaghat A., Samani I., et al., Computational study on novel circulating aerofoils for use in Magnus wind turbine blades. Energy, 2015, 91: 393–403.
DOI: 10.1016/j.energy.2015.08.058.
[3] Shishkin A., Wagner C., Large eddy simulation of the flow around a wind turbine blade. European Conference on Computational Fluid Dynamics DLR, 2006.
[4] Wang G., Zhang L., Shen W.Z., LES simulation and experimental validation of the unsteady aerodynamics of blunt wind turbine airfoils. Energy, 2018, 158: 911–923. DOI: 10.1016/j.energy.2018.06.093.
[5] Wang H., Wu Y.D., Yue S.Y., Wang Y., Numerical investigation on the flow mechanism of multi-Peak frequency feature of rotating instability. Journal of Thermal Science, 2021, 30(2): 668–681.
[6] Tahani M., Kavari G., Masdari M., Mirhosseini M., Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions. Energy, 2017, 131: 78–91.
DOI: 10.1016/j.energy.2017.05.033.
[7] Utsch De Freitas Pinto R.L., Furtado. Gonçalves B.P., A revised theoretical analysis of aerodynamic optimization of horizontal-axis wind turbines based on BEM theory. Renewable Energy, 2017, 105: 625–636.
DOI: 10.1016/j.renene.2016.12.076.
[8] Hansen M.O.L., Aerodynamics of wind turbine. Second Edi. London: Earthscan, 2008.
[9] Van Kuik G.A.M. et al., Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy. Wind Energy Science, 2016, 1(1): 1–39. DOI: 10.5194/wes-1-1-2016.
[10] Li X.X., Yang K., Zhang L., Bai J.Y., Xu J.X., Large thickness airfoils with high lift in the operating range of angle of attack. Journal of Renewable and Sustainable Energy, 2014, 6(3): 1–15. DOI: 10.1063/1.4878846.
[11] Timmer W.A., van Rooij R.P.J.O.M., Summary of the Delft University wind turbine dedicated airfoils. Journal of Renewable and Sustainable Energy, 2003, 125(4): 488–496. DOI: 10.1115/1.1626129.
[12] Law S.P., Gregorek G.M., Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications. NASA CR-180803, 1987.
[13] Skrzypiński W., Gaunaa M., Bak C., The effect of mounting vortex generators on the DTU 10 MW reference wind turbine blade. Journal of Physics: Conference Series, 2014, 524: 12–34.
DOI: 10.1088/1742-6596/524/1/012034.
[14] Fuglsang P., Bove S., Wind tunnel testing of airfoils involves more than just wall correction. European Wind Energy Conference. 2008, pp. 1–11.
[15] Barlow J.B., Rae W.H., Pope A., Low-speed wind tunnel testing. 3rd ed. New York: John Wiley & Sons, INC., 1999.
[16] Allen H.J., Vincenti W.G., Wall interference in a two-dimensional-flow wind tunnel, with consideration of the effect of compressibility. NACA Report No. 782, 1944.
[17] Wang L., Jiao Y., Gao Y., Airfoil wind tunnel correction for angles of attack from –180° to 180°. Wind Energy, 2015, 18(8): 1487–1500. DOI: 10.1002/we.1771.
[18] Bernard-Guelle R., Influence of wind tunnel boundary-layer on two-dimensional transonic test. NASA TTF 17-255, 1976.
[19] Barnwell R.W., Similarity rule for sidewall boundary-layer effect in two-dimensional wind tunnels. AIAA Journal, 1980, 18(9): 1149–1151, 1980.
[20] Kemp W.B., Adcock J.B., Combined four-wall interference assessment in two-dimensional airfoil tests. AIAA Journal, 1983, 21(10): 1353–1359. DOI: 10.2514/3.8253.
[21] Green L.L., Newman P.A., Transonic wall interference assessment and adaptive wall test section1. AIAA 19th Fluid Dynamics. Plasma Dynamics. Lasers Conference, AIAA-87-143, 1987.
[22] Murthy A.V., Effects of aspect ratio and sidewall boundary-layer in airfoil testing. Journal of Aircraft, 1988, 25(3): 244–249. DOI: 10.2514/3.45584.
[23] Cheng K.M., A new method to correct sidewall interference in two-dimensional wind tunnels – A local correction approach. Acta Aerodynamica Sinica, 1998, 16(9): 304–310.
[24] Gardner A.D., Richter K., Effect of the model-sidewall connection for a static airfoil experiment. Journal of Aircraft, 2013, 50(2): 677–680.
DOI: 10.2514/1.C032011.
[25] Ryu S., Emory M., Iaccarino G., Campos A., Duraisamy K., Large-eddy simulation of a wing-body junction flow. AIAA Journal, 2016, 54(3): 793–804. DOI: 10.2514/1.J054212.
[26] Ölçmen S.M., Simpson R.L., Some features of a turbulent wing-body junction vertical flow. International Journal of Heat and Fluid Flow, 2006, 27(6): 980–993. DOI: 10.1016/j.ijheatfluidflow.2006.02.019.
[27] Green L.L., Newman P.A., Wall-interference assessment and corrections for transonic and corrections for transonic NACA 0012 airfoil data from various wind tunnels. NACA TP-3070, 1991.
[28] Li, Q.A., Kamada Y., Takao M., Nishida Y., Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of horizontal axis wind turbine in turbulent inflows. Energy, 2017, 135: 799–810.
DOI: 10.1016/j.energy.2017.06.174.
[29] Choudhry A., Arjomandi A., Kelso R., Methods to control dynamic stall for wind turbine applications. Renewable Energy, 2016, 86: 26–37.
DOI: 10.1016/j.renene.2015.07.097.
[30] Fluent, Ansys Fluent User’s Guide. Release 13.0, November 2010, p.643.
[31] Menter F.R., Langtry R.B., Likki S.R., Suzen Y.B., Huang P.G., Völker S., A correlation-based transition model using local variables—Part I: Model Formulation. Journal of Turbomachinery, 2006, 128(3): 413–422. DOI: 10.1115/1.2184352.
[32] Langtry R.B., Menter F.R., Likki S.R., Suzen Y.B., Huang P.G., and Völker S., A correlation-based transition model using local variables-Part II: Test cases and industrial applications. Journal of Turbomachinery, 2006, 128(3): 423–434. DOI: 10.1115/1.2184353.
[33] Somers D.M., Design and experimental results for the s809 airfoil. NREL/SR, 1997. DOI: 10.2172/437668.
[34] Xu H.Y., Qiao C.L., YangH.Q., Ye Z.Y., Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees. Energy, 2017, 118: 1090–1109. DOI: 10.1016/j.energy.2016.10.131.
[35] Horton H.P., Laminar separation bubbles in two and three dimensional incompressible flow. University of London, 1968.
[36] Mokry D.J.J.M., Chan Y.Y., Two-dimensional wind tunnel wall interference. AGARD-AG-281, 1983.
[37] Rodríguez D., Theofilis V., On the birth of stall cells on airfoils. Theoretical and Computational Fluid Dynamics, 2011, 25(1–4): 105–117.
DOI: 10.1007/s00162-010-0193-7.
[38] Al-Saffar M.S.A., The influence of dimensional and dimensionless parameters on the dynamics of the horseshoe vortex upstream of a circular cylinder. The University of Sheffie, 2016.
[39] Baker C.J., The laminar horseshoe vortex. Journal of Fluid Mechanics, 1979, 95(2): 347–367.
DOI: 10.1017/S0022112079001506.
[40] Davey A., Boundary-layer flow at a saddle point of attachment. Journal of Fluid Mechanics, 1961, 10(4): 593–610. DOI: 10.1017/S0022112061000391.
[41] Yavuz M.M., Elkhoury M., Rockwell D., Near-surface topology and flow structure on a delta wing. AIAA Journal, 2004, 42(2): 332–340. DOI: 10.2514/1.3499.