[1] Lv L., Li J., Micro flat heat pipes for microelectronics cooling: review. Recent Patents on Mechanical Engineering, 2013, 6: 169–184.
[2] Tang H., Tang Y., Wan Z, et al., Review of applications and developments of ultra-thin micro heat pipes for electronic cooling. Applied Energy, 2018, 223: 383–400.
[3] Chen L., Deng D., Huang Q., et al., Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED. Applied Thermal Engineering, 2020, 166: 114686.
[4] Chen Y., Li B., Wang X., et al., Investigation of heat transfer and thermal stresses of novel thermal management system integrated with vapour chamber for IGBT power module. Thermal Science and Engineering Progress, 2019, 10: 73–81.
[5] Li C., Peterson G.P., Wang Y.X., Evaporation/boiling in thin capillary wicks (I) - Wick thickness effects. Journal of Heat Transfer-Transactions of the ASME, 2006, 128(12): 1312–1319.
[6] Chen L., Peterson G.P., Evaporation/boiling in thin capillary wicks (II) - Effects of volumetric porosity and mesh size. Journal of Heat Transfer-Transactions of the ASME, 2006, 128(12): 1320–1328.
[7] Chen L., Peterson G.P., The effective thermal conductivity of wire screen. International Journal of Heat and Mass Transfer, 2006, 49(21–22): 4095–4105.
[8] Huang G.W., Liu W.Y., Luo Y.Q., et al., A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices. Applied Thermal Engineering, 2020, 167: 114726.
[9] Huang G.W., Liu W.Y., Luo Y.Q., et al., A new ultra-thin vapor chamber with composite wick for thin electronic products. International Journal of Thermal Sciences, 2021, 170: 107145.
[10] Yao F., Miao S.S., Zhang M.C., et al., An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator. Applied Thermal Engineering, 2018, 141: 1000–1008.
[11] Koito Y., Imura H., Mochizuki M., Transient thermal characteristic of a vapor chamber. 14th IHPC Florianonolic, Brazil, April 22–27, 2007.
[12] Brahim T., Jemni A., CFD analysis of hotspots copper metal foam flat heat pipe for electronic cooling applications. International Journal of Thermal Sciences, 2021, 159: 106583.
[13] Lurie S., Rabinskiy L.N., Solyaev Y.O., Topology optimization of the wick geometry in a flat plate heat pipe. International Journal of Heat and Mass Transfer, 2019, 128: 239–247.
[14] Zu S.F., Liao X.N., Huang Z., et al., Visualization study on boiling heat transfer of ultra-thin flat heat pipe with single layer wire mesh wick. International Journal of Heat and Mass Transfer, 2021, 173: 121239.
[15] Li D., Huang Z., Liao X.N., et al., Heat and mass transfer characteristics of ultra-thin flat heat pipe with different liquid filling rates. Applied Thermal Energy, 2021, 199: 17588.
[16] Shen C., Zhang Y.Z., Wang Z.X., et al., Experimental investigation on the heat transfer performance of a flat parallel flow heat pipe. International Journal of Heat and Mass Transfer, 2021, 168: 120856.
[17] Mahdavi M., Qiu S., Tiari S., Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems. Applied Thermal Energy, 2015, 81: 325–337.
[18] Xiao B., Faghri A., A three-dimensional thermal-fluid analysis of flat heat pipes. International Journal of Heat and Mass Transfer, 2008, 51(11–12): 3113–3126.
[19] Lefevre F., Lallemand M., Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components. International Journal of Heat and Mass Transfer, 2006, 49(7–8): 1375–1383.
[20] Cao Y., Faghri A., Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numerical Heat Transfer, Part A: Applications, 1991, 18(4): 483–502.
[21] Zuo Z.J., Faghri A., A network thermodynamic analysis of the heat pipe. International Journal of Heat and Mass Transfer, 1998, 41(11): 1473–1484.
[22] Huang Y., Chen Q., A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2017, 105: 270–278.
[23] Xin F., Ma T, Yan Y.Y., Numerical study on the fluid flow and heat transfer performance of flat miniature heat pipe for electronic devices cooling. Advances in Heat Transfer and Thermal Engineering, 2021, pp. 591–595.
DOI: 10.1007/978-981-33-4765-6_102
[24] Lu L.S., Liao H.S., Liu X.K., et al., Numerical analysis on thermal hydraulic performance of a flat plate heat pipe with wick column. Heat and Mass Transfer, 2015, 51: 1051–1059.
[25] Maneemuang S., Kammuang-Lue N., Terdtoon P., et al., Effect of pipe flattening on pressure drop in vapor core and thermal characteristic of miniature round and flat-shape heat pipe with sintered fiber wick. International Journal of Heat and Mass Transfer, 2021, 176: 121416.
[26] Tang Y.L., Hong S.H., Wang S.F., et al., Experimental study on thermal performances of ultra-thin flattened heat pipes. International Journal of Heat and Mass Transfer, 2019, 134: 884–894.