[1]
Zádor J., Taatjes C.A., Fernandes R.X., Kinetics of elementary reactions in low-temperature autoignition chemistry. Progress in Energy and Combustion Science, 2011, 37: 371–421.
[2]
Battin-Leclerc F., Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 2008, 34: 440–498.
[3]
Simmie J.M., Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Progress in Energy and Combustion Science, 2003, 29: 599–634.
[4]
Westbrook C.K., Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proceedings of the Combustion Institute, 2000, 28: 1563–1577.
[5]
Uygun Y., Ignition studies of undiluted diethyl ether in a high-pressure shock tube. Combustion and Flame, 2018, 194: 396–409.
[6]
Sakai Y., Herzler J., Werler M., Schulz C., Fikri M., A quantum chemical and kinetics modeling study on the autoignition mechanism of diethyl ether. Proceedings of the Combustion Institute, 2017, 36: 195–202.
[7]
Issayev G., Sarathy S.M., Farooq A., Autoignition of diethyl ether and a diethyl ether/ethanol blend. Fuel, 2020, 279: 118553.
[8]
Hakimov K., Arafin F., Aljohani K., Djebbi K., Ninnemann E., Vasu S.S., Farooq A., Ignition delay time and speciation of dibutyl ether at high pressures. Combustion and Flame, 2021, 223: 98–109.
[9]
Cai L., vom Lehn F., Pitsch H., Higher alcohol and ether biofuels for compression-ignition engine application: A review with emphasis on combustion kinetics. Energy Fuels, 2021, 35: 1890–1917.
[10]
Thion S., Togbé C., Serinyel Z., Dayma G., Dagaut P.A., Chemical kinetic study of the oxidation of dibutyl-ether in a jet-stirred reactor. Combustion and Flame, 2017, 185: 4–15.
[11]
Serinyel Z., Lailliau M., Thion S., Dayma G., Dagaut P., An experimental chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and comprehensive modeling. Combustion and Flame, 2018, 193: 453–462.
[12]
Serinyel Z., Lailliau M., Dayma G., Dagaut P.A., High pressure oxidation study of di-n-propyl ether. Fuel, 2020, 263: 116554.
[13]
Tran L.-S., Herbinet O., Li Y., Wullenkord J., Zeng M., Bräuer E., Qi F., Kohse-Höinghaus K., Battin-Leclerc F., Low temperature gas-phase oxidation of diethyl ether: Fuel reactivity and fuel-specific products. Proceedings of the Combustion Institute, 2019, 37: 511–519.
[14]
Tran L.-S., Wullenkord J., Li Y., Herbinet O., Zeng M., Qi F., Kohse-Höinghaus K., Battin-Leclerc F., Probing the low temperature chemistry of di-n-butyl ether: Detection of previously unobserved intermediates. Combustion and Flame, 2019, 210: 9–24.
[15]
Belhadj N., Benoit R., Dagaut P., Lailliau M., Serinyel Z., Dayma G., Oxidation of di-n-propyl ether: Characterization of low temperature products. Proceedings of the Combustion Institute, 2021, 337–344.
[16]
Belhadj N., Benoit R., Dagaut P., Lailliau M., Serinyel Z., Dayma G., Khaled F., Moreau B., Foucher F., Oxidation of di-n-butyl ether: Experimental characterization of low-temperature products in JSR and RCM. Combustion and Flame, 2020, 222: 133–144.
[17]
Maruta K., Kataoka T., Kim N.I., Minaev S., Fursenko R., Characteristics of combustion in a narrow channel with a temperature gradient. Proceedings of the Combustion Institute, 2005, 30: 2429–2436.
[18]
Minaev S., Maruta K., Fursenko R., Nonlinear dynamics of flame in a narrow channel with a temperature gradient. Combustion Theory and Modelling, 2007, 11: 187–203.
[19]
Tsuboi Y., Yokomori T., Maruta K., Lower limit of weak flame in a heated channel. Proceedings of the Combustion Institute, 2009, 32: 3075–3081.
[20]
Oshibe H., Nakamura H., Tezuka T., Hasegawa S., Maruta K., Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2010, 157: 1572–1580.
[21]
Yamamoto A., Oshibe H., Nakamura H., Tezuka T., Hasegawa S., Maruta K., Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2011, 33: 3259–3266.
[22]
Shimizu T., Nakamura H., Tezuka T., Hasegawa S., Maruta K., OH and CH2O laser-induced fluorescence measurements for hydrogen flames and methane, n-butane, and dimethyl ether weak flames in a micro flow reactor with a controlled temperature profile. Energy Fuels, 2017, 31: 2298–2307.
[23]
Onda T., Nakamura H., Tezuka T., Hasegawa S., Maruta K., Initial-stage reaction of methane examined by optical measurements of weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 206: 292–307.
[24]
CHEMKIN-PRO 17.2, ANSYS, Inc., San Diego, 2016.
[25]
Grajetzki P., Onda T., Nakamura H., Tezuka T., Maruta K., Investigation of the chemical and dilution effects of major EGR constituents on the reactivity of PRF by weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 209: 13–26.