[1] Zhao D., Li S., Zhao H., Entropy-involved energy measure study of intrinsic thermoacoustic oscillations. Applied Energy, 2016, 177: 570–578.
[2] Poinsot T., Prediction and control of combustion instabilities in real engines. Proceedings of the Combustion Institute, 2017, 36(1): 1–28.
[3] Zhao D., Lu Z., Zhao H., Li X.Y., Wang B., Liu P., A review of active control approaches in stabilizing combustion systems in aerospace industry. Progress in Aerospace Sciences, 2018, 97: 35–60.
[4] Uhm J.H., Acharya S., Low-bandwidth open-loop control of combustion instability. Combustion & Flame, 2005, 142(4): 348–363.
[5] Uhm J.H., Acharya S., Control of combustion instability with a high-momentum air-jet. Combustion and Flame, 2004, 139(1/2): 106–125.
[6] Oliva J., Luciano E., Ballester J., Damping of combustion instabilities through pseudo-active control. Proceedings of the Asme Turbo Expo: Turbomachinery Technical Conference and Exposition, 2018. DOI: 10.1115/GT2018-77102.
[7] Zhao D., Li X.Y., A review of acoustic dampers applied to combustion chambers in aerospace industry. Progress in Aerospace Sciences, 2015, 74: 114–130.
[8] Zhang Z., Zhao D., Han N., Wang S., Li J., Control of combustion instability with a tunable Helmholtz resonator. Aerospace Science & Technology, 2015, 41: 55–62.
[9] Tran N., Ducruix S., Schuller T., Damping combustion instabilities with perforates at the premixer inlet of a swirled burner. Proceedings of the Combustion Institute, 2009, 32(2): 2917–2924.
[10] Han L., Li J., Zhao D., Gu X., Ma B., Wang N., Effects of baffle designs on damping acoustic oscillations in a solid rocket motor. Aerospace Science and Technology, 2021: 106827.
[11] Oztarlik G., Selle L., Poinsot T., Schuller T., Suppression of instabilities of swirled premixed flames with minimal secondary hydrogen injection. Combustion and Flame, 2020, 214: 266–276.
[12] LaBry Z.A., Shanbhogue S.J., Speth R.L., Ghoniem A.F., Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection. Proceedings of the Combustion Institute, 2011, 33(1): 1575–1581.
[13] LaBry Z., Shanbhogue S., Ghoniem A., Microjet injection strategies for mitigating dynamics in a lean premixed swirl-stabilized combustor. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011. DOI: 10.2514/6.2011-515.
[14] Deshmukh N.N., Sharma S.D., Suppression of thermo-acoustic instability using air injection in horizontal Rijke tube. Journal of the Energy Institute, 2017, 90(3): 485–495.
[15] Zhou H., Tang Q., Ren T., Li G., Cen K., Control of thermoacoustic instabilities by CO2 and N2 jet in cross-flow. Applied Thermal Engineering, 2012, 36: 353–359..
[16] Li B., Shi B., Zhao X., Ma K., Xie D., Zhao D., et al., Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: operation limits and combustion instability. Experimental Thermal & Fluid Science International Journal of Experimental Heat Transfer Thermodynamics & Fluid Mechanics, 2018, 90: 115–124.
[17] Stone C., Menon S., Swirl control of combustion instabilities in a gas turbine combustor. Proceedings of the Combustion Institute, 2002.
[18] Kumaran K., Shet U.S.P., Effect of swirl on lean flame limits of pilot-stabilized open premixed turbulent flames. Combustion & Flame, 2007, 151: 391–395.
[19] Huang Y., Yang V., Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proceedings of the Combustion Institute, 2005, 30(2): 1775–1782.
[20] Mafra M.R., Fassani F.L., Zanoelo E.F., Bizzo W.A., Influence of swirl number and fuel equivalence ratio on NO emission in an experimental LPG-fired chamber. Applied Thermal Engineering, 2010, 30(8–9): 928–934.
[21] Chiong M.C., Valera-Medina A., Chong W., et al., Effects of swirler vane angle on palm biodiesel/natural gas combustion in swirl-stabilised gas turbine combustor. Fuel, 2020, 277: 118213.
[22] Hu J., Wang K., Zou X., Shi B., Effects of swirl on the heating process of a central gas stream in a tubular flame. Experimental Thermal and Fluid Science, 2020, 119(1): 110209.
[23] İlbaş M., Karyeyen S., Yilmaz İ., Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International Journal of Hydrogen Energy, 2016, 41(17): 7185–7191.
[24] Xu L., Zheng J., Wang G., Li L., Qi F., Effects of swirler position on flame response and combustion instabilities. Chinese Journal of Aeronautics, 2022, 35(3): 11.
[25] Zhang R., Xu Q., Fan W., Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity. Energy, 2018, 162: 83–98.
[26] Amiri M., Shirneshan A., Effects of air swirl on the combustion and emissions characteristics of a cylindrical furnace fueled with diesel-biodiesel-n-butanol and diesel-biodiesel-methanol blends. Fuel, 2020, 268: 117295.
[27] Belal B.Y., Li G., Zhang Z., El-Batsh H.M., Moneib H.A., Attia A.M.A., The effect of swirl burner design configuration on combustion and emission characteristics of lean pre-vaporized premixed flames. Energy, 2021. 228: 120622.
[28] Sorrentino G., Sabia P., De Joannon M., et al., Influence of preheating and thermal power on cyclonic burner characteristics under mild combustion. Fuel, 2018, 233: 207–214.
[29] Tao C., Zhou H., Effects of superheated steam on combustion instability and NOx emissions in a model lean premixed gas turbine combustor. Fuel, 2020, 288: 119646.
[30] Tao C., Zhou H., Effects of different preheated CO2/O2 jet in cross-flow on combustion instability and emissions in a lean-premixed combustor. Journal of the Energy Institute, 2020, 93(6): 2334–2343.
[31] Deshmukh N.N., Sharma S.D., Coefficient of rayleigh index based performance evaluation of radial micro jet injection technique for thermo-acoustic instability control. Measurement, 2020, 151: 107245.
[32] Zhou H., Tao C., Effects of annular N2/O2 and CO2/O2 jets on combustion instabilities and NOx emissions in lean-premixed methane flames. Fuel, 2019, 263: 116709.
[33] Tao C., Zhou H., Dilution effects of CO2, Ar, N2 and He microjets on the combustion dynamic and emission characteristics of unsteady premixed flame. Aerospace Science and Technology, 2021, 111: 106537.
[34] Lee K., Kim H., Park P., Yang S., Ko Y., CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel, 2013, 106: 682–689.
[35] Shy S., Yang S., Lin W., Su R., Turbulent burning velocities of premixed CH4/diluent/air flames in intense isotropic turbulence with consideration of radiation losses. Combustion & Flame, 2005, 143: 106–118.