[1] Sirajunnisa A.R.,Surendhiran D., Algae - A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable & Sustainable Energy Reviews, 2016, 66: 248–267.
[2] Suganya T., Varman M., Masjuki H.H.,et al., Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable & Sustainable Energy Reviews, 2016, 55: 909–941.
[3] Saber M., Nakhshiniev B., Yoshikawa K., A review of production and upgrading of algal bio-oil. Renewable & Sustainable Energy Reviews, 2016, 58: 918–930.
[4] Thangalazhy-Gopakumar S., Adhikari S., Chattanathan S. A., et al., Catalytic pyrolysis of green algae for hydrocarbon production using H(+)ZSM-5 catalyst. Bioresource Technology, 2012, 118: 150–157.
[5] Jayaraman K., Kok M.V., Gokalp I., Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Applied Thermal Engineering, 2017, 125: 1446–1455.
[6] Durak H., Thermochemical conversion of Phellinus pomaceus via supercritical fluid extraction and pyrolysis processes. Energy Conversion and Management, 2015, 99: 282–298.
[7] Aysu T., Durak H., Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: Effects of pyrolysis parameters on product yields and character. Journal of Analytical and Applied Pyrolysis, 2015, 111: 156–172.
[8] Durak H., Genel S., Tunç M., Pyrolysis of black cumin seed: Significance of catalyst and temperature product yields and chromatographic characterization. Journal of Liquid Chromatography & Related Technologies, 2019, 42(11–12): 331–350.
[9] Bhola V., Desikan R., Santosh S.K., et al., Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering, 2011, 111(3): 377–382.
[10] Duan P.G., Jin B.B., Xu Y.P., et al., Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol. Chemical Engineering Journal, 2015, 269: 262–271.
[11] Li G., Zhou Y. G., Ji F., et al., Yield and characteristics of pyrolysis products obtained from schizochytrium limacinum under different temperature regimes. Energies, 2013, 6(7): 3339–3352.
[12] Muradov N., Fidalgo B., Gujar A.C., et al., Pyrolysis of fast-growing aquatic biomass - Lemna minor (duckweed): Characterization of pyrolysis products. Bioresource Technology, 2010, 101(21): 8424–8428.
[13] Yang C.Y., Li R., Zhang B., et al., Pyrolysis of microalgae: A critical review. Fuel Processing Technology, 2019, 186: 53–72.
[14] Rajanren J.R., Ismail H.M., Narayanapillai P.T., Investigation on phototrophic growth of an indigenous Chlorella vulgaris for biodiesel production. Environmental Progress & Sustainable Energy, 2015, 34(4): 1215–1220.
[15] Kok M.V., Özgür E., Thermal analysis and kinetics of biomass samples. Fuel Processing Technology, 2013, 106: 739–743.
[16] Jaroenkhasemmeesuk C., Tippayawong N., Thermal degradation kinetics of sawdust under intermediate heating rates. Applied Thermal Engineering, 2016, 103: 170–176.
[17] Liu G.C., Liao Y.F., Guo S.D., et al., Thermal behavior and kinetics of municipal solid waste during pyrolysis and combustion process. Applied Thermal Engineering, 2016, 98: 400–408.
[18] Oladokun O., Ahmad A., Abdullah T.A.T., et al., Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Applied Thermal Engineering, 2016, 105: 931–940.
[19] Gai C., Zhang Y.H., Chen W.T., et al., Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresource Technology, 2013, 150: 139–148.
[20] Jayaraman K., Kok M.V., Gokalp I., Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 2017, 101: 293–300.
[21] Gao Y.J., Chen X., Zhang J.G., et al., Chitin-derived mesoporous, nitrogen-containing carbon for heavy-metal removal and styrene epoxidation. Chempluschem, 2015, 80(10): 1556–1564.
[22] Lin B.C., Wang J., Huang Q.X., et al., Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites. Journal of Analytical and Applied Pyrolysis, 2017, 128: 291–303.
[23] Lv X.C., Liu H.C., Huang Y.Q., et al., Synergistic effects on co-pyrolysis of low-temperature hydrothermally pretreated high-protein microalgae and polypropylene. Energy Conversion and Management, 2021, 229: 13.
[24] Jae J., Tompsett G.A., Foster A.J., et al., Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268.
[25] Zheng Y.W., Wang F., Yang X.Q., et al., Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169–179.
[26] Iliopoulou E.F., Stefanidis S.D., Kalogiannis K.G., et al., Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Applied Catalysis B-Environmental, 2012, 127: 281–290.
[27] Espindola J.S., Gilbert C.J., Perez-Lopez O.W., et al., Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. Fuel Processing Technology, 2020, 201: 11.
[28] Fanchiang W.L., Lin Y.C., Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Applied Catalysis a-General, 2012, 419: 102–110.
[29] Wu H.H., Wang L., Ji G.B., et al., Renewable production of nitrogen-containing compounds and hydrocarbons from catalytic microwave-assisted pyrolysis of chlorella over metal-doped HZSM-5 catalysts. Journal of Analytical and Applied Pyrolysis, 2020, 151: 7.
[30] Liang Y.G., Cheng B.J., Si Y.B., et al., Thermal decomposition kinetics and characteristics of Spartina alterniflora via thermogravimetric analysis. Renewable Energy, 2014, 68: 111–117.
[31] Agrawal A., Chakraborty S., A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresource Technology, 2013, 128: 72–80.
[32] Lopez-Gonzalez D., Fernandez-Lopez M., Valverde J. L., et al., Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry. Applied Energy, 2014, 114: 227–237.
[33] Sharara M.A., Holeman N., Sadaka S.S., et al., Pyrolysis kinetics of algal consortia grown using swine manure wastewater. Bioresource Technology, 2014, 169: 658–666.
[34] Zou S.P., Wu Y.L., Yang M.D., et al., Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresource Technology, 2010, 101(1): 359–365.
[35] Naqvi S.R., Uemura Y., Osman N., et al., Kinetic study of the catalytic pyrolysis of paddy husk by use of thermogravimetric data and the Coats-Redfern model. Research on Chemical Intermediates, 2015, 41(12): 9743–9755.
[36] Azizi K., Moraveji M.K., Najafabadi H.A., Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresource Technology, 2017, 243: 481–491.
[37] Chen W.H., Lin B.J., Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres. Energy, 2016, 94: 569– 578.
[38] Fong M.J.B., Loy A.C.M., Chin B.L.F., et al., Catalytic pyrolysis of Chlorella vulgaris: Kinetic and thermodynamic analysis. Bioresource Technology, 2019, 289: 121689.
[39] Liu Y.Q., Lim L.R.X., Wang J., et al., Investigation on pyrolysis of microalgae botryococcus braunii and hapalosiphon sp. Industrial & Engineering Chemistry Research, 2012, 51(31): 10320–10326.
[40] Jayaraman K., Kok M.V., Gokalp I., Combustion properties and kinetics of different biomass samples using TG-MS technique. Journal of Thermal Analysis and Calorimetry, 2016, 127(2): 1361–1370.
[41] Wang L., Lei H.W., Liu J., et al., Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir. RSC Advances, 2018, 8(4): 2196–2202.
[42] Qiao Y., Wang B., Zong P., et al., Thermal behavior, kinetics and fast pyrolysis characteristics of palm oil: Analytical TG-FTIR and Py-GC/MS study. Energy Conversion and Management, 2019, 199: 111964.
[43] Zhang W.G., Zhang Z.H., Yan S.H., Effects of various amino acids as organic nitrogen sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresource Technology, 2015, 197: 458–464.
[44] Simmonds P.G., Medley E.E., Ratcliff M.A., et al., Thermal decomposition of aliphatic monoaminomonocarboxylic acids. Analytical Chemistry, 1972, 44(12): 2060–2066.
[45] Anand V., Sunjeev V., Vinu R. Catalytic fast pyrolysis of Arthrospira platensis (spirulina) algae using zeolites. Journal of Analytical and Applied Pyrolysis, 2016, 118: 298–307.
[46] Debono O., Villot A., Nitrogen products and reaction pathway of nitrogen compounds during the pyrolysis of various organic wastes. Journal of Analytical and Applied Pyrolysis, 2015, 114: 222–234.