[1]
Wang B., Gan Z., A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 2013, 61: 43–70.
[2]
Deng W., Liu S., Jiang Z., et al., Development of a spaceborne pulse tube cooler operating at 170 K. International Journal of Refrigeration, 2020, 115: 1–8.
[3]
Liu S., Jiang Z., Ding L., et al., Impact of operating parameters on 80 K pulse tube cryocoolers for space applications. International Journal of Refrigeration, 2019, 99: 226–233.
[4]
Zhi X., Han L., Dietrich M., et al., A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid. Cryogenics, 2013, 58: 93–96.
[5]
Qiu L., Cao Q., Zhi X., et al., A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics, 2011, 51(10): 609–612.
[6]
Gan Z., Fan B., Wu Y., et al., A two-stage Stirling-type pulse tube cryocooler with a cold inertance tube. Cryogenics, 2010, 50: 426–431.
[7]
Dietrich M., Thummes G., Two-stage high frequency pulse tube cooler for refrigeration at 25 K. Cryogenics, 2010, 50(4): 281–286.
[8]
Nguyen T., Orsini R., Toma G., et al., Two stage pulse tube cooler for space applications. American Institute of Physics, 2004. DOI: 10.1063/1.1774824.
[9]
Radebaugh R., Development of the pulse tube refrigerator as an efficient and reliable cryocooler. Australian Refrigeration Air Conditioning & Heating, 2001, 55(3): 21–24, 26–27. (in Chinese)
[10]
Wu W., Cui X., Liu S., et al., Cooling performance improvement of a two-stage pulse tube cryocooler with er-plated screen as regenerator material. International Journal of Refrigeration, 2021, 131: 615–622.
[11]
Liu S., Chen X., Zhang A., et al., Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures. Energy, 2017, 123: 378–385.
[12]
Kittel P., Ideal orifice pulse tube refrigerator performance. Cryogenics, 1992, 32(9): 843–844.
[13]
Wang C., Wu P., Chen Z., et al., Numerical modelling of an orifice pulse tube refrigerator. Cryogenics, 1992, 32(9): 785–790.
[14]
Boer P., Performance of the inertance pulse tube. Cryogenics, 2002, 42: 209–221.
[15]
Zhu S., Matsubara Y., Numerical method of inertance tube pulse tube refrigerator. Cryogenics, 2004, 44(9): 649–660.
[16]
Shi Y., Zhu S., Experimental investigation of pulse tube refrigerator with displacer. International Journal of Refrigeration, 2017, 76: 1–6.
[17]
Liu B., Jiang Z., Ying K., et al., A high efficiency Stirling/pulse tube hybrid cryocooler operating at 35 K/85 K. Cryogenics, 2019, 101: 137–140.
[18]
Lin Y., Guo Z., Guo Z., et al., Experimental investigation of the connecting tube effect on a step displacer type two stage pulse tube refrigerator. Applied Thermal Engineering, 2020, 173: 115–229.
[19]
Matsubara Y., Miyake A., Alternative methods of the orifice pulse tube refrigerator. International Cryocooler Conference, 1988, 05: 127–135.
[20]
Brito M., Peskett G., Numerical model of free warm expander pulse tube cooler. Cryogenics, 2001, 41(10): 751–755.
[21]
Masuyama S., Kim Y., Park S., et al., Experimental research of Stirling type pulse tube refrigerator with an active phase control. Cryogenics, 2006, 46: 385–390.
[22]
Zhu S., Nogawa M., Pulse tube stirling machine with warm gas-driven displacer. Cryogenics, 2010, 50(5): 320–330.
[23]
Rana H., Abolghasemi M., Stone R., et al., Numerical modelling of a coaxial stirling pulse tube cryocooler with an active displacer for space applications. Cryogenics, 106. DOI: 10.1016/j.cryogenics.2020.103048.
[24]
Abolghasemi M., Liang K., Stone R., et al., Stirling pulse tube cryocooler using an active displacer. Cryogenics, 2018, 96: 53–61.
[25]
Abolghasemi M.A., Rana H., Stone R., et al., Coaxial Stirling pulse tube cryocooler with active displacer. Cryogenics, 2020, 111: 103–143.
[26]
Zhu H., Jiang Z., Liu S., et al., Comparison of three phase shifters for Stirling-type pulse tube cryocoolers operating below 30 K. International Journal of Refrigeration, 2018, 88: 413–419.
[27]
Pang X., Wang X., Dai W., et al., Theoretical and experimental study of a gas-coupled two-stage pulse tube cooler with stepped warm displacer as the phase shifter. Cryogenics, 2018, 92: 36–40.
[28]
Chassaing C., Butterworth J., Aigouy G., et al., 15 K pulse tube cooler for space missions. Cryocoolers 18, International Cryocooler Conference, Inc., Boulder, CO, edited by Miller S.D. and Ross Jr. R.G., 2014, pp. 27–32.
[29]
Swift G., Gardner D., Backhaus S., et al., Acoustic recovery of lost power in pulse tube refrigerators. The Journal of the Acoustical Society of America, 1999, 105: 711–724.
[30]
Wang L., Wu M., Sun X., et al., A cascade pulse tube cooler capable of energy recovery. Applied Energy, 2016, 164: 572–578.
[31]
Chen X., Ling F., Zeng Y., et al., Investigation of the high efficiency pulse tube refrigerator with acoustic power recovery. Applied Thermal Engineering, 2019, 159: 113904.
[32]
Zhu S., Lin Y., Fundament of input power distribution and phase shifter functions of a step displacer type two-stage pulse tube refrigerator. International Journal of Refrigeration, 2020, 113: 31–37.
[33]
Wang X., Zhang Y., Li H., et al., A high efficiency hybrid stirling-pulse tube cryocooler. AIP Advances, 2015, 5: 037127. DOI: 10.1063/1.4915900.
[34]
Guo Y., Chao Y., Gan Z., et al., Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model. IOP Conference, 2017.
DOI: 10.1088/1757-899X/278/1/012174.
[35]
Yin W., Liu S., Wu Y., et al., An 880 mW@15 K thermal coupled pulse tube cryocooler with active phase shifter. IOP Conference Series: Materials Science and Engineering, 2022, 1240: 012018.
[36]
Liu B., Jiang Z., Ying K., et al., Numerical and experimental study on a stirling/pulse tube hybrid refrigerator operating around 30 K. International Journal of Refrigeration, 2021, 123: 34–44.
[37]
Liu B., Jiang Z., Ying K., et al., Theoretical model of a Stirling/Pulse tube hybrid refrigerator and its verification. Applied Thermal Engineering, 2021.
DOI: 10.1016/j.applthermaleng.2021.116587.
[38]
Qiu L., Numazawa T., Thummes G., et al., Performance improvement of a pulse tube cooler below 4 K by use of GdAlO3 regenerator material. Cryogenics, 2001, 41(9): 693–696.