[1] Loni R., Najafi G., Bellos E., et al., A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook. Journal of Cleaner Production, 2021, 287: 125070. https://doi.org/10.1016/j.jclepro.2020.125070
[2] He C., Liu C., Gao H., et al., The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle. Energy, 2012, 38: 136–143. https://doi.org/10.1016/j.energy.2011.12.022
[3] Liu C., He C., Gao H., et al., The optimal evaporation temperature of subcritical ORC based on second law efficiency for waste heat recovery. Entropy, 2012, 14(3): 491–504. https://doi.org/10.3390/e14030491
[4] Xiao L., Wu S., Yi T., et al., Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle. Energy, 2015, 83: 723–733. https://doi.org/10.1016/j.energy.2015.02.081
[5] Xu H., Gao N., Zhu T., Investigation on the fluid selection and evaporation parametric optimization for sub- and supercritical organic Rankine cycle. Energy, 2016, 96: 59–68. https://doi.org/10.1016/j.energy.2015.12.040
[6] Li W., Feng X., Yu L.J., et al., Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle. Applied Thermal Engineering, 2011, 31(17–18): 4014–4023. https://doi.org/10.1016/j.applthermaleng.2011.08.003
[7] Li Y.R., Wang J.N., Du M.T., Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle. Energy, 2012, 42(1): 503–509. https://doi.org/10.1016/j.energy.2012.03.018
[8] Wang T., Gao N., Zhu T., Investigation on the optimal condensation temperature of supercritical organic Rankine cycle systems considering meteorological parameters. Energy Conversion and Management, 2018, 174: 54–64. https://doi.org/10.1016/j.enconman.2018.08.020
[9] Li J., Pei G., Ji J., et al., Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications. Energy, 2014, 77: 579–590. https://doi.org/10.1016/j.energy.2014.09.039
[10] Chen H., Goswami D.Y., Stefanakos E.K., A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 2010, 14: 3059–3067. https://doi.org/10.1016/j.rser.2010.07.006
[11] Hung T.C., Waste heat recovery of organic Rankine cycle using dry fluids. Energy Conversion and Management, 2001, 42: 539–553. https://doi.org/10.1016/S0196-8904(00)00081-9
[12] Liu B.T., Chien K.H., Wang C.C., Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004, 29: 1207–1217. https://doi.org/10.1016/j.energy.2004.01.004
[13] Zhang X., Zhang C., He M., et al., Selection and evaluation of dry and isentropic organic working fluids used in organic Rankine cycle based on the turning point on their saturated vapor curves. Journal of Thermal Science, 2019, 28(4): 643–658. https://doi.org/10.1007/s11630-019-1149-x
[14] Zhang X., Zhang Y., Wang J., New classification of dry and isentropic working fluids and a method used to determine their optimal or worst condensation temperature used in organic Rankine cycle. Energy, 2020, 201: 117722.
https://doi.org/10.1016/j.energy.2020.117722
[15] Zhang X., Zhang Y., Wang J., Evaluation and selection of dry and isentropic working fluids based on their pump performance in small-scale organic Rankine cycle. Applied Thermal Engineering, 2021, 191: 116919. https://doi.org/10.1016/j.applthermaleng.2021.116919
[16] Lemmon E.W., Huber M.L., McLinden M.O., NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1; National Institute of Standard Technology: Boulder, USA, Created May 07, 2013, Updated February 19, 2017.
[17] Zhai H., Shi L., An Q., Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system. Energy, 2014, 74: 2–11. https://doi.org/10.1016/j.energy.2013.12.030
[18] Maraver D., Royo J., Lemort V., et al., Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications. Applied Energy, 2014, 117: 11–29. https://doi.org/10.1016/j.apenergy.2013.11.076
[19] Vaja I., Gambarotta A., Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs). Energy, 2010, 35(2): 1084–1093. https://doi.org/10.1016/j.energy.2009.06.001
[20] Xu J., Luo X., Chen Y., et al., Multi-criteria design optimization and screening of heat exchangers for a subcritical ORC. Energy Procedia, 2015, 75: 1639–1645. https://doi.org/10.1016/j.egypro.2015.07.397
[21] Wang J., Yan Z., Wang M., et al., Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source. Energy, 2013, 49(1): 356–365. https://doi.org/10.1016/j.energy.2012.11.009
[22] Cataldo F., Mastrullo R., Mauro A.W., et al., Fluid selection of Organic Rankine Cycle for low-temperature waste heat recovery based on thermal optimization. Energy, 2014, 72: 159–167. https://doi.org/10.1016/j.energy.2014.05.019
[23] Yang F., Zhang H., Bei C., et al., Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator. Energy, 2015, 91: 128–141. https://doi.org/10.1016/j.energy.2015.08.034
[24] Feng Y., Zhang Y., Li B., et al., Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery. Energy, 2015, 82: 664–677. https://doi.org/10.1016/j.energy.2015.01.075
[25] Zhang X., Li Y., An examination of super dry working fluids used in regenerative organic Rankine cycles. Energy, 2023, 263: 125931. https://doi.org/10.1016/j.energy.2022.125931