[1]
Kitanovski A., Plaznik U., Tomc U., et al., Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration, 2015, 5: 288– 298.
[2]
Molenbroek E., Smith M., Surmeli N., et al., Savings and benefits of global regulations for energy efficient products. European Union Report, 2015.
[3]
Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., et al., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.
[4]
Vuppaladadiyam A.K., Antunes E., Vuppaladadiyam S.S.V., et al., Progress in the development and use of refrigerants and unintended environmental consequences. Science of the Total Environment, 2022, 823: 153670.
[5]
Brown J.S., Domanski P.A., Review of alternative cooling technologies. Applied Thermal Engineering, 2014, 64(1–2): 252–262.
[6]
Choi S., Han U., Cho H., et al., Review: Recent advances in household refrigerator cycle technologies. Applied Thermal Engineering, 2016, 132: 560–574.
[7]
Kitanovski A., Energy applications of magnetocaloric materials. Advanced Energy Materials, 2020, 10(10): 1903741.
[8]
Boldrin D., Fantastic barocalorics and where to find them. Applied Physics Letters, 2021, 118: 170502.
[9]
Moya X., Kar-Narayan S., Mathur N.D., Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450.
[10]
Kitanovski A., Plaznik U., Tomc U., et al., Present and future caloric refrigeration and heat-pump technologies. International Journal of Refrigeration, 2015, 57: 288–298.
[11]
Alahmer A., Al-Amayreh M., Mostafa A.O., et al., Magnetic refrigeration design technologies: State of the art and general perspectives. Energies, 2021, 14(15): 4662.
[12]
Guo M., Sun B., Wu M., et al., Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film. Applied Physics Letters, 2020, 117: 202901.
[13]
Hao X., Zhai J., Kong L.B., et al., A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1–57.
[14]
Greibich F., Schwdiauer R., Mao G., et al., Elastocaloric heat pump with specific cooling power of 20.9 W·g–1 exploiting snap-through instability and strain-induced crystallization. Nature Energy, 2021, 6(3): 260–267.
[15]
Qian S., Yuan L., Yan G., et al., State-of-the-art and prospects of elastocaloric cooling technology. Journal of Refrigeration, 2018, 39(1): 1–12.
[16]
Kuang Y., Qi J., Xu H., et al., Low-pressure-induced large reversible barocaloric effect near room temperature in (MnNiGe)-(FeCoGe) alloys. Scripta Materialia, 2021, 200: 113908.
[17]
Lloveras P., Tamarit J.-L., Advances and obstacles in pressure-driven solid-state cooling: A review of barocaloric materials. MRS Energy & Sustainability, 2021, 8(1): 3–15.
[18]
Rodriquez E.L., Filisko F.E., Thermoelastic temperature changes in poly(methyl methacrylate) at high hydrostatic pressure: Experimental. Journal of Applied Physics, 1982, 53(10): 6536–6540.
[19]
Alex Müller K., Fauth F., Fischer S., et al., Cooling by adiabatic pressure application in Pr1−xLaxNiO3. Applied Physics Letters, 1998, 73(8): 1056–1058.
[20]
Manosa L., Gonzalez-Alonso D., Planes A., et al., Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481.
[21]
Gorev M.V., Bogdanov E.V., Flerov I.N., et al., Barocaloric effect in oxyfluorides Rb2KTiOF5 and (NH4)2NbOF5. Ferroelectrics, 2010, 397(1): 76–80.
[22]
Li B., Kawakita Y., Ohira-Kawamura S., et al., Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510.
[23]
Lloveras P., Aznar A., Barrio M., et al., Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nature Communications, 2019, 10: 1803.
[24]
Dai Z., Wang C., Ding Y., et al., Thermodynamic analysis on the performance of barocaloric refrigeration systems using Neopentyl Glycol as the refrigerant. Journal of Thermal Science, 2022, 32: 1063–1073.
[25]
Zhou S., Zhang Z., Fang X., Research progress of solid-solid phase change materials for thermal energy storage. Chemical Industry and Engineering Progress, 2021, 40(3): 1371–1383.
[26]
Shen Y., Study on the organic/inorganic composite energy storage material. Nanjing University of Technology, Nanjing, China, 2005.
[27]
Yan Q., Wang W., Research on the thermal storage performance of solid-solid phase-change material of wall. Energy Research & Utilization, 2005, 01: 19–20, 23. (in Chinese)
[28]
Zhang J., Wu K., Zhang J., et al., DSC study on phase transition kinetics of Trimethylolethane, Neopentyl Glycol and their binary systems. Acta Energiae Solaris Sinica, 2000, 04: 399–402.
[29]
Li X., Zhang G., Wu L., et al., DSC study of Trimethylolethane/Neopentyl Glycol binary system. Journal of Textile Research, 2004, 05: 59–61, 152. (in Chinese)
[30]
Zhang N., Song Y., Du Y., et al., A novel solid-solid phase change material: Pentaglycerine/expanded graphite composite PCMs. Advanced Engineering Materials, 2018, 20(10): 1800237.
[31]
Santos-Moreno S., Doppiu S., Lopez G.A., et al., Study of the phase transitions in the binary system NPG-TRIS for thermal energy storage applications. Materials (Basel), 2020, 13(5): 1162.
[32]
Jin X., Zhang X., Thermal analysis of a double layer phase change material floor. Applied Thermal Engineering, 2011, 31(10): 1576–1581.
[33]
Longeon M., Soupart A., Fourmigué J.-F., et al., Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 2013, 112: 175–184.
[34]
Voller V.R., Fast implicit finite-difference method for the analysis of phase-change problems. Numerical Heat Transfer Part B-Fundamentals, 1990, 17(2): 155–169.