[1]
Clifford K.H., Advances in central receivers for concentrating solar applications. Solar Energy, 2017, 152: 38–56.
[2]
Nadarajah K., Divakar V., Solar energy for future world: A review. Renewable and Sustainable Energy Reviews, 2016, 62: 1092–1105.
[3]
Gonzalo A.P., Marugán A.P., García Márquez F.P., A review of the application performances of concentrated solar power systems. Applied Energy, 2019, 255: 113893.
[4]
He Y.L., Qiu Y.Y., Wang K., et al., Perspective of concentrating solar power. Energy, 2020, 198: 117373.
[5]
Michael J.W., Tim W., SolarPILOT: A power tower solar field layout and characterization tool. Solar Energy, 2018, 171: 185–196.
[6]
Yang B., Zhao J., Tao X., et al., Calculation of the concentrated flux density distribution in parabolic trough solar concentrators by Monte Carlo Ray-Trace Method. 2010 Symposium on Photonics and Optoelectronics, Chengdu, China, 2010.
DOI: 10.1109/SOPO.2010.5504452.
[7]
Mecit A.M., Miller F., Optical analysis of a window for solar receivers using the Monte Carlo ray trace method. ASME 2013 7th International Conference on Energy Sustainability, Minnesota, USA, 2013.
DOI: 10.1115/ES2013-18186.
[8]
Craig K.J., Marsberg J., Meyer J.P., Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver. AIP Conference Proceedings, 2016, 1734: 030009.
[9]
Mao Q., Xie M., Tan H., Effects of material selection on the radiation flux of a tube receiver in a dish solar system. Heat Transfer Research, 2014, 45: 339–347.
[10]
Cerecedo L.O.L., Pitalua-Diaz N., Salgado T.I., et al., Optical performance modeling of a solar tower heliostat field and estimation of receiver temperature. 2013 IEEE Int Autumn Meet Power, Electron Comput ROPEC, 2013. DOI: 10.1109/ROPEC.2013.6702759.
[11]
Ren N., Liang J., Qu X., et al., GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Optics Express, 2010, 18: 6811–6823.
[12]
Craig K.J., Moghimi M.A., Rungasamy A.E., et al., Finite-volume ray tracing using Computational Fluid Dynamics in linear focus CSP applications. Applied Energy, 2016, 183: 241–256.
[13]
Moghimi M.A., Craig K.J., Meyer J.P., A novel computational approach to combine the optical and thermal modelling of Linear Fresnel Collectors using the finite volume method. Solar Energy, 2015, 116: 407–427.
[14]
Ardekani M.M., Craig K.J., Meyer J.P., Combined thermal, optical and economic optimization of a linear Fresnel collector. AIP Conference Proceedings, 2017, 1850: 040004.
[15]
García L., Burisch M., Sanchez M., Spillage estimation in a heliostats field for solar field optimization. Energy Procedia, 2015, 69: 1269–1276.
[16]
Rolland J., Rousseau B., Vicente J., Prediction of thermal radiative properties in porous media: A Monte-Carlo Ray Tracing method. Radiative Transfer - VI Proceedings of the 6th International Symposium on Radiative Transfer. Antalya, Turkey, 2010.
DOI: 10.1615/ICHMT.2010.RAD-6.530.
[17]
Belhomme B., Pitz-Paal R., Schwarzbözl P., et al., A new fast ray tracing tool for high-precision simulation of heliostat fields. Journal of Solar Energy Engineering, 2009, 131(3): 031002.
[18]
Qiu Y., Li M.J., He Y.L., et al., Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non-uniform solar flux. Applied Thermal Engineering, 2016, 115: 1255–1265.
[19]
Wang F., Tan J., Ma L., et al., Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system. Energy Conversion and Management, 2015, 90: 47–52.
[20]
Wang W.Q., Qiu Y.Y., Li M.J., et al., Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower. Applied Energy, 2020, 272: 115079.
[21]
Zou C., Zhang Y., Falcoz Q., et al., Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system. Renewable Energy, 2017, 103: 478–489.
[22]
Zou C., Zhang Y., Feng H., et al., Effects of geometric parameters on thermal performance for a cylindrical solar receiver using a 3D numerical model. Energy Conversion and Management, 2017, 149: 293–302.
[23]
Rodríguez-Sánchez M.R., Marugan-Cruz C., Acosta-Iborra A., et al., Comparison of simplified heat transfer models and CFD simulations for molten salt external receiver. Applied Thermal Engineering, 2014, 73: 993–1005.
[24]
Zhou H., Li Y., Zhou M., et al., Numerical simulation of a lab-scale molten-salt external solar receiver and its experimental validation. Journal of Energy Engineering, 2021, 147(1): 033701.
[25]
Zhou H., Li Y., Zhu Y., et al., Experimental and numerical evaluation of a lab-scale external solar receiver. Journal of Renewable and Sustainable Energy, 2020, 12(4): 043705.
[26]
Zhou H., Li Y., Zuo Y., et al.,. Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver. Renewable Energy, 2021, 164: 331–345.
[27]
He F., Shi J., Zhou L., et al., Monte Carlo calculation of view factors between some complex surfaces: Rectangular plane and parallel cylinder, rectangular plane and torus, especially cold-rolled strip and W-shaped radiant tube in continuous annealing furnace. International Journal of Thermal Sciences, 2018, 134: 465–474.
[28]
Planas A.P., Accuracy of Monte Carlo ray-tracing thermal radiation calculations: A practical discussion. Proceedings of the Sixth European Symposium on Space Environmental Control Systems, Noordwijk, The Netherlands, 1997, 400: 579.
[29]
Mirhosseini M., Rezania A., Rosendahl L., View factor of solar chimneys by Monte Carlo method. Energy Procedia, 2017, 142: 513–518.
[30]
Zavoico, Alexis B., Solar power tower design basis document, Revision 0. United States, 2001.
[31]
Wendelin T., Dobos A., Lewandowski A., SolTrace: A ray-tracing code for complex solar optical systems. Technical Report, National Renewable Energy Lab. (NREL), Golden, CO (United States), 2013.
DOI: 10.2172/1260924.
[32]
Marco A., Marco B., Simone M., et al., Heliostat aiming point optimization for external tower receiver. Solar Energy, 2017, 157: 1114–1129.
[33]
Fauple J.H., Fisher F.E., Engineering design - a synthesis of stress analysis and material engineering. Wiley, New York, 1981.
[34]
Slusser J.W., Titcomb J.B., Heffelfinger M.T., et al., Corrosion in molten nitrate - nitrite salts. Journal of Metals, 1985, 37: 24–27.
[35]
Rodriguez-Sanchez M.R., Venegas M., Marugan-Cruz C., et al., Thermal, mechanical and hydraulic analysis to optimize the design of molten salt central receivers of solar tower power plants. International Conference on Renewable Energies and Power Quality, 2013, 13: 2772– 3038.
[36]
Adrien S., Fabien C., Gilles F., et al., Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy: Application to THEMIS solar tower. Solar Energy, 2013, 94: 352–366.
[37]
Liao Z., Li X., Xu C., et al., Allowable flux density on a solar central receiver. Renewable Energy, 2014, 62: 747–753.
[38]
Luo Y., Du X., Yang L., et al., Study on the allowable flux density for a solar central dual-receiver. Energy Procedia, 2015, 69: 138–147.