[1]
Nagasawa K., Kato A., Nishiki Y., Matsumura Y., Atobe M., Mitsushima S., The effect of flow-field structure in toluene hydrogenation electrolyzer for energy carrier synthesis system. Electrochimica Acta, 2017, 246: 459–465. DOI: 10.1016/j.electacta.2017.06.081.
[2]
Hall D., Lvov S., Modeling a CuCl(aq)/HCl(aq) electrolyzer using thermodynamics and electrochemical kinetics. Electrochimica Acta, 2016, 190: 1167–1174. DOI: 10.1016/j.electacta.2015.12.184.
[3]
Espinosa-López M., Darras C., Poggi P., Glises R., Baucour P., Rakotondrainibe A., Besse S., Serre-Combe P., Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy, 2018, 119: 160–173.
DOI: 10.1016/j.renene.2017.11.081.
[4]
Ozden E., Tari I., PEM fuel cell degradation effects on the performance of a stand-alone solar energy system. International Journal of Hydrogen Energy, 2017, 42(18): 13217–13225. DOI: 10.1016/j.ijhydene.2017.04.017.
[5]
Selamet Ö., Becerikli F., Mat M., Kaplan Y., Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack. International Journal of Hydrogen Energy, 2011, 36(17): 11480–11487. DOI: 10.1016/j.ijhydene.2011.01.129.
[6]
Toghyani S., Afshari E., Baniasadi E., Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2018, 290: 506–519. DOI: 10.1016/j.electacta.2018.09.106.
[7]
Abdol Rahim A., Tijani A., Kamarudin S., Hanapi S., An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport. Journal of Power Sources, 2016, 309: 56–65.
DOI: 10.1016/j.jpowsour.2016.01.012.
[8]
Clarke R., Giddey S., Badwal S., Stand-alone PEM water electrolysis system for fail safe operation with a renewable energy source. International Journal of Hydrogen Energy, 2010, 35(3): 928–935.
DOI: 10.1016/j.ijhydene.2009.11.100.
[9]
Millet P., Mbemba N., Grigoriev S., Fateev V. , Aukauloo A., Etiévant C., Electrochemical performances of PEM water electrolysis cells and perspectives. International Journal of Hydrogen Energy, 2011, 36(6): 4134–4142.
DOI: 10.1016/j.ijhydene.2010.06.105.
[10]
Shiva Kumar S., Himabindu V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2019, 2(3): 442–454.
DOI: 10.1016/j.mset.2019.03.002.
[11]
Santarelli M., Medina P., Calì M., Fitting regression model and experimental validation for a high pressure PEM electrolyzer. International Journal of Hydrogen Energy, 2009, 34(6): 2519–2530.
DOI: 10.1016/j.ijhydene.2008.11.036.
[12]
Marangio F., Santarelli M., Calì M., Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production. International Journal of Hydrogen Energy, 2009, 34(3): 1143–1158.
DOI: 10.1016/j.ijhydene.2008.11.083.
[13]
Dale N., Mann M., Salehfar H., Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics. Journal of Power Sources, 2008, 185(2): 1348–1353. DOI: 10.1016/j.jpowsour.2008.08.054.
[14]
Grigoriev S., et al., Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. International Journal of Hydrogen Energy, 2009, 34(14): 5986–5991.
DOI: 10.1016/j.ijhydene.2009.01.047.
[15]
Sartory M., et al., Theoretical and experimental analysis of an asymmetric high pressure PEM water electrolyser up to 155 bar. International Journal of Hydrogen Energy, 2017, 42(52): 30493–30508.
DOI: 10.1016/j.ijhydene.2017.10.112.
[16]
Schalenbach M., Carmo M., Fritz D., Mergel J., Stolten D., Pressurized PEM water electrolysis: Efficiency and gas crossover. International Journal of Hydrogen Energy, 2013, 38(35): 14921–14933.
DOI: 10.1016/j.ijhydene.2013.09.013.
[17]
Kim H., Park M., Lee K., One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production. International Journal of Hydrogen Energy, 2013, 38(6): 2596–2609.
DOI: 10.1016/j.ijhydene.2012.12.006.
[18]
Awasthi A., Scott K., Basu S., Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(22): 14779–14786.
DOI: 10.1016/j.ijhydene.2011.03.045.
[19]
Kaya M., Demir N., Numerical investigation of PEM water electrolysis performance for different oxygen evolution electrocatalysts. Fuel Cells, 2017, 17(1): 37–47. DOI: 10.1002/fuce.201600216.
[20]
Onda K., Murakami T., Hikosaka T., Kobayashi M., Notu R., Ito K., Performance analysis of polymer-electrolyte water electrolysis cell at a small-unit test cell and performance prediction of large stacked cell. Journal of The Electrochemical Society, 2002, 149(8): A1069.
DOI: 10.1149/1.1492287.
[21]
Han B., Mo J., Kang Z., Zhang F., Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells. Electrochimica Acta, 2016, 188: 317–326. DOI: 10.1016/j.electacta.2015.11.139.
[22]
Toghyani S., Baniasadi E., Afshari E., Numerical simulation and exergoeconomic analysis of a high temperature polymer exchange membrane electrolyzer. International Journal of Hydrogen Energy, 2019, 44(60): 31731–31744. DOI: 10.1016/j.ijhydene.2019.10.087.
[23]
Toghyani S., Afshari E., Baniasadi E., Atyabi S., Naterer G., Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer. Energy, 2018, 152: 237–246. DOI: 10.1016/j.energy.2018.03.140.
[24]
Ito K., et al., Analysis and visualization of water flow impact on hydrogen production efficiency in solid polymer water electrolyzer under high-pressure condition. International Journal of Hydrogen Energy, 2015, 40(18): 5995–6003. DOI: 10.1016/j.ijhydene.2015.03.045.
[25]
Olesen A., Rømer C., Kær S., A numerical study of the gas-liquid, two-phase flow maldistribution in the anode of a high pressure PEM water electrolysis cell. International Journal of Hydrogen Energy, 2016, 41(1): 52–68. DOI: 10.1016/j.ijhydene.2015.09.140.
[26]
Rahim A., Tijani A., Modeling and analysis the effects of temperature and pressure on the gas-crossover in polymer electrolyte membrane electrolyzer. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2016, 2(1): 1–7.
[27]
Zhang H., Su S., Lin G., Chen J., Efficiency calculation and configuration design of a PEM electrolyzer system for hydrogen production. International Journal of Electrochemical Science, 2012, 7(5): 4143–4157.
[28]
Toghyani S., Afshari E., Baniasadi E., Atyabi S., Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochimica Acta, 2018, 267: 234–245.
DOI: 10.1016/j.electacta.2018.02.078.
[29]
Wang Z., Xu C., Wang X., Liao Z., Du X., Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell. Science China Technological Sciences, 2021, 64(7): 1555–1566. DOI: 10.1007/s11431-021-1810-9.
[30]
Zinser A., Papakonstantinou G., Sundmacher K., Analysis of mass transport processes in the anodic porous transport layer in PEM water electrolysers. International Journal of Hydrogen Energy, 2019, 44(52): 28077–28087.
DOI: 10.1016/j.ijhydene.2019.09.081.
[31]
Ferrero D., Santarelli M., Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi-junction solar cells. Energy Conversion and Management, 2017, 148: 16–29. DOI: 10.1016/j.enconman.2017.05.059.
[32]
Ito H., Maeda T., Nakano A., Kato A., Yoshida T., Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer. Electrochimica Acta, 2013, 100: 242–248. DOI: 10.1016/j.electacta.2012.05.068.
[33]
Ruiz D., Sasmito A., Shamim T., Numerical investigation of the high temperature PEM electrolyzer: Effect of flow channel configurations. ECS Transaction, 2013, 58(2): 99–112. DOI: 10.1149/05802.0099ecst.
[34]
Chippar P., Ju H., Numerical modeling and investigation of gas crossover effects in high temperature proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 2013, 38(18): 7704–7714. DOI: 10.1016/j.ijhydene.2012.07.123.
[35]
Medina P., Santarelli M., Analysis of water transport in a high pressure PEM electrolyzer. International Journal of Hydrogen Energy, 2010, 35(11): 5173–5186.
DOI: 10.1016/j.ijhydene.2010.02.130.
[36]
Sun C., Hsiau S., Effect of electrolyte concentration difference on hydrogen production during pem electrolysis. Journal of Electrochemical Science and Technology, 2018, 9(2): 99–108.
DOI: 10.5229/JECST.2018.9.2.99.
[37]
Gurau V., Liu H., Kakaç S., Two-dimensional model for proton exchange membrane fuel cells. American Institute of Chemical Engineers Journals, 1998, 44(11): 2410–2422. DOI: 10.1002/aic.690441109.
[38]
Olesen A., Frensch S., Kær S., Towards uniformly distributed heat, mass and charge: A flow field design study for high pressure and high current density operation of PEM electrolysis cells. Electrochimica Acta, 2019, 293: 476–495.
DOI: 10.1016/j.electacta.2018.10.008.
[39]
García-Valverde R., Espinosa N., Urbina A., Simple PEM water electrolyser model and experimental validation. International Journal of Hydrogen Energy, 2012, 37(2): 1927–1938. DOI: 10.1016/j.ijhydene.2011.09.027.
[40]
Falcão D., Oliveira V., Rangel C., Pinho C., Pinto A., Water transport through a PEM fuel cell: A one-dimensional model with heat transfer effects. Chemical Engineering Science, 2009, 64(9): 2216–2225. DOI: 10.1016/j.ces.2009.01.049.
[41]
Dedigama I., et al., In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers - Flow visualisation and electrochemical impedance spectroscopy. International Journal of Hydrogen Energy, 2014, 39(9): 4468–4482.
DOI: 10.1016/j.ijhydene.2014.01.026.
[42]
Millet P., Water electrolysis using eme technology: electric potential distribution inside a nafion membrane during electrolysis. Electrochimica Acta, 1994, 39(17): 2501–2506.
DOI: 10.1016/0013-4686(94)00261-4.
[43]
Li Y., Yang G., Yu S., Kang Z., Talley D., Zhang F., Direct thermal visualization of micro-scale hydrogen evolution reactions in proton exchange membrane electrolyzer cells. Energy Conversion and Management, 2019, 199(8): 1–6.
DOI: 10.1016/j.enconman.2019.111935.
[44]
Sakai T., Takenaka H., Wakabayashi N., Kawami Y., Torikai E., Preparation of Nafion-metal fine particles composite membrane. Journal of Membrane Science, 1987, 31: 227–234.
DOI: 10.1016/S0376-7388(00)82229-2.