[1]
European Aviation Safety Agency, Certification Memorandum: Turbine Engine Relighting in Flight. 2003.
[2]
Federal Aviation Administration, Federal Aviation Regulations Section 25.903. Restart Capability, 2000.
[3]
Paxton B., Systems design and experimental evaluation of a high-altitude relight test facility. University of Cincinnati, 2015.
[4]
Lefebvre A.H., Ballal D.R., Gas turbine combustion: alternative fuels and emissions. CRC Press, 2010.
[5]
Mongia H.C., TAPS-A 4th generation propulsion combustor technology for low emissions. AIAA Paper No. 2003-2657, 2003.
[6]
Lazik W., Doerr T., Bake S., et al., Development of lean-burn low-NOx combustion technology at Rolls-Royce Deutschland. ASME Paper No. GT2008-51115, 2008.
[7]
Foust M.J., Thomsen D., Stickles R., et al., Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines. AIAA Paper No. 2012-0936, 2012.
[8]
Ballal D.R., Lefebvre A.H., Ignition of liquid fuel sprays at sub-atmospheric pressures. Combustion and Flame, 1978, 31: 115–126.
[9]
Rizkalla A.A., Lefebvre A.H., The influence of air and liquid properties on airblast atomization. Journal of Fluids Engineering, 1975, 97(3): 316–320.
[10]
Beck J.E., Lefebvre A.H., Koblish T.R., Airblast atomization at conditions of low air velocity. Journal of Propulsion and Power, 1991, 7(2): 207–212.
[11]
Read R., Rogerson J., Hochgreb S., Relight imaging at low temperature, low pressure conditions. AIAA Paper No. 2008-0957, 2008.
[12]
Read R.W., Rogerson J.W., Hochgreb S., Flame imaging of gas-turbine relight. AIAA Journal, 2010, 48(9): 1916–1927.
[13]
Read R.W., Rogerson J.W., Hochgreb S., Planar laser-induced fluorescence fuel imaging during gas-turbine relight. Journal of Propulsion and Power, 2013, 29(4): 961–974.
[14]
Mosbach T., Sadanandan R., Meier W., et al., Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques. ASME Paper No. GT2010-22625, 2010.
[15]
Mosbach T., Gebel G.C., Clercq P.L., et al., Investigation of GTL-like jet fuel composition on GT engine altitude ignition and combustion performance: Part II―Detailed diagnostics. ASME Paper No. GT2011-45510, 2011.
[16]
Neophytou A., Spark ignition and flame propagation in sprays. University of Cambridge, 2011.
[17]
Linassier G., Viguier C., Verdier H., et al., Experimental investigations of the ignition performances on a multi-sector combustor under high altitude conditions. AIAA Paper No. 2012-0934, 2012.
[18]
Linassier G., Bruyat A., Villedieu P., et al., Application of numerical simulations to predict aircraft combustor ignition. Comptes Rendus Mécanique, 2013, 341(1–2): 201–210.
[19]
Paxton B., Tambe S.B., Jeng S.M., Systems design and experimental evaluation of a high-altitude relight test facility. ASME Paper No. GT2016-57089, 2016.
[20]
Denton M.J., Experimental Investigation into the High Altitude Relight Characteristics of a Three-Cup Combustor Sector. University of Cincinnati, 2017.
[21]
Chen L., Ding S., Liu H., et al., Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine. Applied Energy, 2017, 203: 91–100.
[22]
U.S. Government Printing Office, U.S. Standard Atmosphere. Washington, D.C., 1976.
[23]
Yang J., Liu C., Wu H., et al., Experimental investigation of ignition and LBO characteristics of SPP injector: the effect of pilot stage air split ratio. ASME Paper No. GT2018-76282, 2018.
[24]
Shanmugadas K.P., Chakravarthy S.R., Narasimha C.R., et al., Characterization of wall filming and atomization inside a gas-turbine swirl injector. Experiments in Fluids, 2018, 59(10): 1–26.