[1] Zeinalzadeh A., Pakatchian M.R., Evaluation of novel-objective functions in the design optimization of a transonic rotor by using deep learning. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 561–583.
[2] Deburge L.L., The aerodynamic significance of fillet geometry in turbocompressor blade rows. Journal of Engineering for Gas Turbines and Power, 1980, 102(4): 984–993.
[3] Li J.B., Li X., Ji L.C., Yi W.L., Zhou L., Use of blended blade and end wall method in compressor cascades: Definition and mechanism comparisons. Aerospace Science and Technology, 2019, 92: 738–749.
[4] Hoeger M., Baier R.D., Muller R., Engber M., Impact of a fillet on diffusing vane end-wall flow structure. Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA, 2006, ISROMAC-11.
[5] Hoeger M., Schmidt-Eisenlohr U., Gomez S., Sauer H., Müller R., Numerical simulation of the influence of a bulb and a fillet on the secondary flow in a compressor cascade. TASK Quarterly, 2019, 6(1): 25–37.
[6] Li L.P., Chu W.L., Zhang H.G., Mechanism study of end-wall fillet’s influence on performance and flow field of high-load compressor cascade. Journal of Propulsion Technology, 2017, 38(12): 2743–2752.
[7] Reutter O., Hemmert-Pottmann S., Hergt A., Nicke E., End-wall contouring and fillet design for reducing losses and homogenizing the outflow of a compressor cascade. Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014, 6: 16–20. DOI: 10.1115/GT2014-25277.
[8] Kügeler E., Nürnberger D., Weber A., Engel K., Influence of blade fillets on the performance of a 15-stage gas turbine compressor. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, 2008, 6: 9–13. DOI: 10.1115/GT2008-50748.
[9] Curlett B.P., The aerodynamic effect of fillet radius in a low-speed compressor cascade. Washington, DC: National Aeronautics and Space Administration, 1991.
[10] Meyer R., Schulz S., Liesner K., A parameter study on the influence of fillets on the compressor cascade performance. Journal of Theoretical and Applied Mechanics, 2012, 50(1): 131–145.
[11] Kienzle N., Hoang D., Waesker M., Buelten B., Mare F., Doetsch C., Influence of fillet radii on the flow and strength behavior of a shrouded centrifugal compressor impeller. Proceedings of 14th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Gdansk, Poland, 2021, 4: 12–16. DOI: 10.29008/ETC2021-638.
[12] Tweedt D., Okiishi T., Stator blade row geometry modification influence on two-stage. Axial-Flow Compressor Aerodynamic Performance, 1983. DOI: 10.21236/ada141793.
[13] Goodhand M.N., Miller R.J., The impact of real geometries on three-dimensional separations in compressors. Journal of Turbomachinery, 2012, 134(2): 021007.
[14] Justin J.O., The effects of blade fillets on aerodynamic performance of a high-pressure ratio centrifugal compressor. The 23rd International Compressor Engineering Conference, Purdue University, USA, 2016, 7: 11–14. 2016-1048,
https://docs.lib.purdue.edu/icec/2396.
[15] Liu H.Q., Chi Z.R., Zhang J.X., Influence of root fillet on the structural and aerodynamic performance of a centrifugal impeller. IGTC Congress Proceedings, Tokyo, Japan, 2015, IGTC2015-51.
[16] Gao L.M., Cai Y.T., Li P., Li R.Y., Influence of blade-root fillet on transonic rotor performance. Journal of Mechanical Engineering, 2016, 52(20): 137–143.
[17] Strazisar A.J., Wood J.R., Hathaway M.D., Laser anemometer measurements in a transonic axial-flow fan rotor. NASA: Cleveland, OH, USA, 1989.
[18] Naseri A., Boroomand M., Sammak S., Numerical investigation of effect of inlet swirl and total pressure distortion on performance and stability of an axial transonic compressor. Journal of Thermal Science, 2016, 25(6): 501–510.
[19] Kim S., Pullan G., Hall C.A., Stall inception in low pressure ratio fans. Journal of Turbomachinery, 2019, 141(7): 071005.
[20] Niazi S., Numerical simulation of rotating stall and surge alleviation in axial compressor. Georgia Institute of Technology, Georgia, America, 2000.
[21] Hah C., Wennerstrom A.J., Three-dimensional flow fields inside a transonic compressor with swept blades. Journal of Turbomachinery, 1991, 113(2): 241–250.
[22] Cai Y.J., Zhong Y.L., Qian L.H., He S.Z., Pang Q.H., Increasing surge margin in an axial flow compressor using “end-bend” airfoils. International Gas Turbine Symposium and Exposition, Beijing, China, 1985, 9: 1–7. DOI: 10.1115/85-IGT-25.
[23] Li Z.H., Liu Y.M., Blade-end treatment for axial compressors based on optimization method. Energy, 2017, 126(1): 217–230.
[24] Wang Z.Q., Han W.J., Xu W.Y., The Effect of blade curving on flow characteristics in rectangular turbine stator cascades with different incidences. International Gas Turbine and Aeroengine Congress and Exposition, Orlando, Florida, USA, 1991, 6: 3–6.
DOI: 10.1115/91-GT-060.
[25] Weingold H.D., Neubert R.J., Behlke R.F., Potter G.E., Reduction of compressor stator end-wall losses through the use of bowed stators. International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, USA, 1995, 6: 5–8. DOI: 10.1115/95-GT-380.
[26] Robinson C.J., Northall J.D., McFarlane C.W.R., Measurement and calculation of the three-dimensional flow in axial compressor stators, with and without End-Bends. ASME International Gas Turbine and Aeroengine Congress and Exposition, Toronto, Canada, 1989, 6: 4–8. DOI: 10.1115/89-GT-6.
[27] Wang Z.Q., Zheng Y., Research status and development of the bowed-twisted blade for turbomachines. Engineering Science, 2000, 2(6): 40–48.
[28] Sasaki T., Breugelmans F.E., Comparison of sweep and dihedral effects on compressor cascade performance. Journal of Turbomachinery, 1998, 120(2): 454–464.
[29] Song Y.P., Li N., Wang S.T., Wang Z.Q., Effects of curved rotor on the performance of axial flow transonic compressor. Journal of Engineering Thermophysics, 2004, 25(4): 582–584.