[1] Dudley B., BP statistical review of world energy. BP Statistical Review, London, UK, 2019.
[2] Good P., Jason A.L., Timothy A., Andrew W., Robin C., Jeff K.R., et al., Nonlinear regional warming with increasing CO2 concentrations. Nature Climate Change, 2015, 5(2): 138–142.
[3] International Energy Agency, CO2 emissions from fuel combustion 2018.
[4] International Energy Agency, Global energy and CO2 status report 2019.
[5] Kimura N., Omata K., Kiga T., Takano S., Shikisima S., The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management, 1995, 36(6–9): 805–808.
[6] Wolsky A.M., Daniels E.J., Jody B.J., Recovering CO2 from large and medium-size stationary combustors. Journal of the Air & Waste Management Association, 1991, 41(4): 449–454.
[7] Tola V., Cau G., Ferrara F., Pettinau A., CO2 emissions reduction from coal-fired power generation: A techno-economic comparison. Journal of Energy Resources Technology, 2016, 138(6): 1–9.
[8] Kotakar S.G., Navthar R.R., Controlling CO2 emissions from power plants: A environmental view. Applied Mechanics and Materials, 2011, 110–116: 2049–2053.
[9] Xiong J., Zhao H., Zheng C., Techno-economic evaluation of oxy-combustion coal-fired power plants. Chinese Science Bulletin, 2011, 56(31): 3333–3345.
[10] Davison J., Performance and costs of power plants with capture and storage of CO2. Energy, 2007, 32(7): 1163–1176.
[11] Darde A., Prabhakar R., Tranier J.P., Perrin N., Air separation and flue gas compression and purification units for oxy-coal combustion systems. Energy Procedia, 2009, 1(1): 527–534.
[12] Planckaert J.P., Paufique C., Delgado M.A., González R., Borrero F.V., Oxy-combustion flue gas purification in the CIUDEN compression and purification unit (CPU). Proceedings of the 7th International Conference on Clean Coal Technologies. Krakow, Poland, 2015.
[13] Tranier J.P., Dubettier R., Darde A., Perrin N., Air separation, flue gas compression and Purification units for oxy-coal combustion systems. Energy Procedia, 2011, 4: 966–971.
[14] Hong J., Chaudhry G., Brisson J.G., Field R., Gazzino M., Ghoniem A.F., Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor. Energy, 2009, 34(9): 1332–1340.
[15] Hong J., Field R., Gazzino M., Ghoniem A.F., Operating pressure dependence of the pressurized oxy-fuel combustion power cycle. Energy, 2010, 35: 5391–5399.
[16] Gopan A., Kumfer B.M., Phillips J., Thimsen D., Smith R., Axelbaum R.L., Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture. Applied Energy, 2014, 125: 179–188.
[17] Gopan A., Kumfer B.M., Axelbaum R.L., Effect of operating pressure and fuel moisture on net plant efficiency of a staged pressurized oxy-combustion power plant. International Journal of Greenhouse Gas Control, 2015, 39: 390–396.
[18] Shi Y., Zhong W., Shao Y., Liu X., Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed. Applied Thermal Engineering, 2019, 150: 1104–1115.
[19] Prieler R., Mayr B., Demuth M., Spoljaric D., Hochenauer C., Application of the steady flamelet model on a lab-scale and an industrial furnace for different oxygen concentrations. Energy, 2015, 91: 451–464.
[20] Gao D., Chen H., Yang J., Gu J., Influence factor analysis of circulating fluidized bed boiler oxy-fuel combustion and CO2 capture power generation unit operation energy consumption. Proceedings of the CSEE, 2019, 39(5): 1387–1396.
[21] Wall T., Liu Y., Bhattacharya S., A scoping study on oxy-CFB technology as an alternative carbon capture option for Australian black and brown coals, ANLEC R&D, Monash University, 2012.
[22] Lyu J., Yang H., Ling W., Nie L., Wang S., Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler. Frontiers in Energy, 2019, 13(1): 114–119.
[23] Li W., Li S., Ren Q., Tan L., Lu Q., Study of oxy-fuel coal combustion in a 0.1 MWth circulating fluidized bed at high oxygen concentrations. Energy and Fuels, 2014, 28(2): 1249–1254.
[24] Li S., Li W., Xu M., Wang X., Li H., Lu Q., The experimental study on nitrogen oxides and SO2 emission for oxy-fuel circulation fluidized bed combustion with high oxygen concentration. Fuel, 2015, 146: 81–87.
[25] Tan L., Li S., Li W., Shou E., Lu Q., Effects of oxygen staging and excess oxygen on O2/CO2 combustion with a high oxygen concentration in a circulating fluidized bed. Energy and Fuels, 2014, 28: 2069–2075.
[26] Wang X., Ren Q., Li W., Li H., Li S., Lu Q., Nitrogenous gas emissions from coal/biomass co-combustion under high oxygen concentration in circulating fluidized bed. Energy and Fuels, 2017, 31(3): 3234–3242.
[27] Li H., Li S., Ren Q., Li W., Xu M., Liu J., Lu Q., Experimental results for oxy-fuel combustion with high oxygen concentration in a 1 MWth pilot-scale circulating fluidized bed. Energy Procedia, 2014, 63: 362–371.
[28] Li S., Li H., Li W., Xu M., Eddings E.G., Ren Q., Lu Q., Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1 MWth pilot-scale oxy-fuel circulating fluidized bed. Applied Energy, 2017, 197: 203–211.
[29] Xu M., Li S., Li W., Lu Q., Effects of gas staging on the NO emission during O2/CO2 combustion with high oxygen concentration in circulating fluidized bed. Energy and Fuels, 2015, 29(5): 3302–3311.
[30] Xiong J., Zhao H., Chen M., Zheng C., Simulation study of an 800 MWe oxy-combustion pulverized-coal-fired power plant. Energy and Fuels, 2011, 25: 2405–2415.
[31] Liu B., Yang X., Song W., Lin W., Process simulation development of coal combustion in a circulating fluidized bed combustor based on Aspen Plus. Energy and Fuels, 2011, 25(4): 1721–1730.
[32] Bolea I., Romeo L.M., Pallarés D., The role of external heat exchangers in oxy-fuel circulating fluidized bed. Applied Energy, 2012, 94: 215–223.
[33] Zhang X., Chen J., Yao L., Huang Y., Zhang X., Qiu L., Research and development of large-scale cryogenic air separation in China. Journal of Zhejiang University Science A, 2014, 15(5): 309–322.
[34] Bouillon P.A., Hennes S., Mahieux C., Post-combustion or oxy fuel-A comparison between coal power plants with integrated CO2 capture. Energy Procedia, 2009, 1(1): 4015–4022.
[35] Sadegh S., David P., Fredrik N., et al., Heat extraction from a utility-scale oxy-fuel-fired CFB boiler. Chemical Engineering Science, 2015, 130: 144–150.
[36] Jin B., Zhao H., Zheng C., Thermoeconomic cost analysis of CO2 compression and purification unit in oxy-combustion power plants. Energy Conversion Management, 2015, 106: 53–60.