[1] Xiong H., Wang Q., Zhang C., et al., Droplet evaporation to boiling in van der Waals fluid. Journal of Thermal Science, 2022, 31(3): 790–801.
[2] Norris D.J., Arlinghaus E.G., Meng L., et al., Opaline photonic crystals: How does self-assembly work? Advanced Materials, 2004, 16(16): 1393–1399.
[3] Park J., Moon J., Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir, 2006, 22(8): 3506–3513.
[4] Zhou Z.L., Cao C., Cao L.D., et al., Evaporation kinetics of surfactant solution droplets on rice (Oryza sativa) leaves. PLoS One, 2017, 12(5): e0176870.
[5] Visaria M., Mudawar I., Application of two-phase spray cooling for thermal management of electronic devices. IEEE Transactions on Components and Packaging Technologies, 2009, 32(4): 784–793.
[6] Kumar M., Chandran A.S., Nair M.R., et al., Mechanistic insights into nanoscale heat transfer on platinum surfaces using molecular dynamics simulations. Computational Materials Science, 2025, 252: 113817.
[7] Chong D., Zhu M., Zhao Q., et al., A review on thermal design of liquid droplet radiator system. Journal of Thermal Science, 2021, 30(2): 394–417.
[8] Dugas V., Broutin J., Souteyrand E., Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 2005, 21(20): 9130–9136.
[9] Maxwell J.C., The scientific papers of james clerk maxwell. University Press, 1890.
[10] Picknett R., Bexon R., The evaporation of sessile or pendant drops in still air. Journal of Colloid and Interface Science, 1977, 61(2): 336–350.
[11] Bourges Monnier C., Shanahan M., Influence of evaporation on contact angle. Langmuir, 1995, 11(7): 2820–2829.
[12] Deegan R.D., Bakajin O., Dupont T.F., et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829.
[13] Deegan R.D., Bakajin O., Dupont T.F., et al., Contact line deposits in an evaporating drop. Physical Review E, Statistical physics Plasmas Fluids Related Interdisciplinary Topics, 2000, 62: 756–765.
[14] Deegan R.D., Pattern formation in drying drops. Physical Review E, Statistical physics Plasmas Fluids Related Interdisciplinary Topics, 2000, 61(1): 475–485.
[15] Erbil H.Y., McHale G., Newton M., Drop evaporation on solid surfaces: constant contact angle mode. Langmuir, 2002, 18(7): 2636–2641.
[16] Shin D.H., Lee S.H., Jung J.-Y., et al., Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectronic Engineering, 2009, 86(4–6):1350–1353.
[17] Lin Y., Chu F., Wu X., Evaporation of heated droplets at different wetting modes: A decoupled study of diffusive and convective effects. International Journal of Heat and Mass Transfer, 2023, 207: 123993.
[18] Peng B., He W., Hao X., et al., Interfacial thermal conductance and thermal accommodation coefficient of evaporating thin liquid films: A molecular dynamics study. Computational Materials Science, 2014, 87: 260–266.
[19] Kueh T.C., Hung Y.M., Enhanced film-wise water evaporation through graphene nanostructures: A molecular dynamics insight. International Journal of Heat and Mass Transfer, 2024, 233: 126010.
[20] Li Q., Wang B., Zhao Z., Molecular dynamics simulation of wetting and interfacial behaviors of argon fluid confined in smooth and groove-patterned rough nano-channels. Computational Materials Science, 2014, 95: 121–128.
[21] Yang R., Chen D., Zheng W., et al., Theoretical insight into the effect of steam temperature on heavy oil/steam interface behaviors using molecular dynamics simulation. Journal of Thermal Science, 2023, 32(6): 2179–2195.
[22] Zhang J., Leroy F., Muller-Plathe F., Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Langmuir, 2013, 29(31): 9770–9782.
[23] Hens A., Biswas G., De S., Evaporation of water droplets on Pt-surface in presence of external electric field—A molecular dynamics study. Journal of Chemical Physics, 2015, 143(9): 094702.
[24] Li Q., Wang B., Chen Y., et al., Wetting and evaporation of argon nanodroplets on smooth and rough substrates: Molecular dynamics simulations. Chemical Physics Letters, 2016, 662: 73–79.
[25] Wang F., Wu H., Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 2015, 5(1): 17521.
[26] Wu X., Yang Z., Duan Y., Evaporation of R32/R1234yf mixture nanodroplets on a smooth substrate: Molecular dynamics simulation. Chemical Physics Letters, 2019, 733: 136672.
[27] Deng X., Liu Y., Liu C., Evaporation behaviors of R32/R1234ze(E) mixtures on a copper surface using molecular dynamics simulations. International Communications in Heat and Mass Transfer, 2022, 138: 106400.
[28] Shen J., Wu C., Song J., et al., Characterizing the thermal transport and kinetics of droplet evaporation on a solid surface with hybrid wettability. International Communications in Heat and Mass Transfer, 2023, 143: 106714.
[29] Lopes M.C., Bonaccurso E., Evaporation control of sessile water drops by soft viscoelastic surfaces. Soft Matter, 2012, 8(30): 7875–7881.
[30] Lopes M.C., Bonaccurso E., Influence of substrate elasticity on particle deposition patterns from evaporating water-silica suspension droplets. Soft Matter, 2013, 9(33): 7942–7950.
[31] Yuan Z., Zhang X., Hou H., et al., Liquid metal slingshot. Physical Review Fluids, 2020, 5(11): 111601.
[32] Balyakin I., Yuryev A., Filippov V., et al., Viscosity of liquid gallium: Neural network potential molecular dynamics and experimental study. Computational Materials Science, 2022, 215: 111802.
[33] Li G., Zhang M., Liu S., et al., Three-dimensional flexible electronics using solidified liquid metal with regulated plasticity. Nature Electronics, 2023, 6(2): 154–163.
[34] Wang X., Repaka D.V.M., Suwardi A., et al., Thermal and electrical properties of liquid metal gallium during phase transition. Transactions of Tianjin University, 2023, 29(3): 209–215.
[35] Wang X., Liu L., Yang C., et al., Molecular dynamics simulation of liquid film boiling on solid metal and liquid metal surfaces. International Journal of Heat and Mass Transfer, 2023, 200: 123528.
[36] Wang X., Liu L., Zhao L., et al., Sessile droplet evaporation on the surface of a liquid metal. New Journal of Chemistry, 2022, 46(37): 17918–17927.
[37] Cheng S., Lechman J.B., Plimpton S.J., et al., Evaporation of Lennard-Jones fluids. Journal of Chemical Physics, 2011, 134(22): 224704.
[38] Jorgensen W.L., Maxwell D.S., Tirado-Rives J., Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225–11236.
[39] NIST Chemistry WebBook.
https://webbook.nist.gov/chemistry/fluid/, 2023.
[40] Wang Y., Bi S., Cui J., et al., Molecular dynamics simulation study on mass diffusion coefficient and viscosity of CO2/n-hexane system. Journal of Engineering Thermophysics, 2020, 41(7): 1579–1584.
[41] Abascal J.L., Vega C., A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, 2005, 123(23): 234505.
[42] Thompson S., Gubbins K., Walton J., et al., A molecular dynamics study of liquid drops. The Journal of Chemical Physics, 1984, 81(1): 530–542.
[43] Desai S., Kaware R., Computational modeling of nanodroplet evaporation for scalable micro-/ nano-manufacturing. IIE Transactions, 2012, 44(7): 568–579.
[44] Fan J., Wu H., Wang F., Evaporation-driven liquid flow through nanochannels. Physics of Fluids, 2020, 32(1): 012001.
[45] Gong H., Pan C., Dai Y., Molecular dynamics study of the evaporation of R1233zd(E) and its isomers on Cu surface. International Journal of Refrigeration, 2025, 170: 500–509.
[46] Wayner Jr P., Tung C., Tirumala M., et al., Experimental study of evaporation in the contact line region of a thin film of hexane. Journal of Heat Transfer, 1985, 107(1): 182‒189.
[47] Yang X., Yan Y., Molecular dynamics simulation for microscope insight of water evaporation on a heated magnesium surface. Applied Thermal Engineering, 2011, 31(5): 640–648.
[48] Creighton M.A., Yuen M.C., Susner M.A., et al., Oxidation of gallium-based liquid metal alloys by water. Langmuir, 2020, 36(43): 12933–12941.
[49] Zhou X., Chen G., Xu L., et al., A compact route for efficient production of high-purity β-Ga2O3 powder. Rare Metals, 2024, 43(9): 4573–4584.
[50] Shah M., A parametric study of gallium adhesion to gibbsite. University of California, Davis, 2021.
[51] Yang T., Pan C., Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. International Journal of Heat and Mass Transfer, 2005, 48(17): 3516–3526.
[52] Hu M., Goicochea J.V., Michel B., et al., Thermal rectification at water/functionalized silica interfaces. Applied Physics Letters, 2009, 95(15): 151903.
[53] Wu C., Kuo L., Lin S., et al., Effects of temperature, size of water droplets, and surface roughness on nanowetting properties investigated using molecular dynamics simulation. Computational Materials Science, 2012, 53(1): 25–30.
[54] Chen L., Chen P.-F., Li Z.-Z., et al., The study on interface characteristics near the metal wall by a molecular dynamics method. Computers & Fluids, 2018, 164: 64–72.