[1] Asthana R., Tewari S.N., The engulfment of foreign particles by a freezing interface. Journal of Materials Science, 1993, 28(20): 5414–5425.
[2] Worster M.G., Peppin S.S.L., Wettlaufer J.S., Colloidal mushy layers. Journal of Fluid Mechanics, 2021, 914: A28.
[3] Rempel A.W., Wettlaufer J.S., Worster M.G., Interfacial premelting and the thermomolecular force: thermodynamic buoyancy. Physical Review Letter, 2001, 87(8): 088501.
[4] Rempel A.W., Hydromechanical processes in freezing soils. Vadose Zone Journal, 2012, 11(4): 0045.
[5] Lu X., Zhang F., Qin W., et al., Experimental investigation on frost heave characteristics of saturated clay soil under different stress levels and temperature gradients. Cold Regions Science and Technology, 2021, 192: 103379.
[6] Zhou J., Wei C., Wei H., et al., Experimental and theoretical characterization of frost heave and ice lenses. Cold Regions Science and Technology, 2014, 104: 76–87.
[7] Vachier J., Wettlaufer J.S., Premelting controlled active matter in ice. Physical Review E, 2022, 105(2): 024601.
[8] Chang T., Zhao G., Ice Inhibition for cryopreservation: materials, strategies, and challenges. Advanced Science, 2021, 8(6): 2002425.
[9] Deller R.C., Vatish M., Mitchell D.A., et al., Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nature Communications, 2014, 5(1): 3244.
[10] Yang G., Bolotnikov A.E., Fochuk P.M., et al., Thermo-migration of Te inclusions in CdZnTe during post-growth annealing in a temperature-gradient field. Physica Status Solidi C, 2014, 11: 1328–1332.
[11] Li J., Wang L., Ni P., et al., Growth of bulk Si from Si-Al alloy by temperature gradient zone melting. Materials Science in Semiconductor Processing, 2017, 66: 170–175.
[12] Hansen-Goos H., Wettlaufer J.S., Theory of ice premelting in porous media. Physical Review E, 2010, 81: 031604.
[13] Tyagi S., Monteux C., Deville S., Solute effects on the dynamics and deformation of emulsion droplets during freezing. Soft Matter, 2022, 18(21): 4178–4188.
[14] Luengo-Márquez J., Izquierdo-Ruiz F., MacDowell L.G., Intermolecular forces at ice and water interfaces: Premelting, surface freezing, and regelation. The Journal of Chemical Physics, 2022, 157(4): 044704.
[15] Dash J.G., Rempel A.W., Wettlaufer J.S., The physics of premelted ice and its geophysical consequences. Reviews of Modern Physics, 2006, 78(3): 695–741.
[16] Peppin S.S.L., Spannuth M.J., Wettlaufer J.S., Onsager reciprocity in premelting solids. Journal of Statistical Physics, 2009, 134(4): 701–708.
[17] You J.X., Wang Z.J., Grae Worster M., Controls on microstructural features during solidification of colloidal suspensions. Acta Materialia, 2018, 157: 288–297.
[18] Pramanik S., Wettlaufer J.S., Confinement effects in premelting dynamics. Physical Review E, 2017, 96(5): 052801.
[19] Zhu X., Brochard L., Jiang Z., et al., Molecular simulations of premelted films between C-S-H and ice: Implication for cryo-suction in cement-based materials. Cement and Concrete Research, 2023, 174: 107341.
[20] Marath N.K., Wettlaufer J.S., Impurity effects in thermal regelation. Soft Matter, 2020, 16(25): 5886–5891.
[21] Roldughin V.I., Kharitonova T.V., On the nonequilibrium thermodynamics of thermocrystallization motion of inclusions in solids. Colloid Journal, 2013, 75(2): 198–201.
[22] Saruya T., Kurita K., Rempel A.W., Indirect measurement of interfacial melting from macroscopic ice observations. Physical Review E, 2014, 89(6): 060401.
[23] Vachier J., Wettlaufer J.S., Biolocomotion and premelting in ice. Frontiers in Physics, 2022, 10: 904836.
[24] Rizza G., Dawi E.A., Vredenberg A.M., et al., Ion engineering of embedded nanostructures: from spherical to facetted nanoparticles. Applied Physics Letters, 2009, 95(4): 043105.
[25] Dadic R., Light B., Warren S.G., Migration of air bubbles in ice under a temperature gradient, with application to “Snowball Earth”. Journal of Geophysical Research: Atmospheres, 2010, 115: D18.
[26] Saint-Michel B., Georgelin M., Deville S., et al., Interaction of multiple particles with a solidification front: from compacted particle layer to particle trapping. Langmuir, 2017, 33(23): 5617–5627.
[27] Tyagi S., Monteux C., Deville S., Multiple objects interacting with a solidification front. Scientific Reports, 2021, 11(1): 3513.
[28] Wettlaufer J.S., Worster M.G., Premelting dynamics. Annual Review of Fluid Mechanics, 2006, 38(1): 427– 452.
[29] You J, Wang Z, Worster M.G., Thermal regelation of single particles and particle clusters in ice. Soft Matter, 2021, 17(7): 1779–1787.
[30] Chen S., The ice-water interface and its interactions with colloidal monolayers. University of Oxford, Oxford, UK, 2019.
[31] Qin D., Xia Y., Whitesides G.M., Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010, 5(3): 491–502.
[32] Martinez-Duarte B.R., Madou M.J., SU-8 photolithography and its impact on microfluidics, first ed., CRC Press, Florida, 2011.
[33] Wettlaufer J.S., Worster M.G., Wilen L.A., et al., A theory of premelting dynamics for all power law forces. Physical Review E, 1996, 76(19): 3602.
[34] Rempel A.W., Worster M.G., The interaction between a particle and an advancing solidifcation front. Journal of Crystal Growth, 1999, 205(3): 427–440.
[35] Thomson E.S., Goos H.H., Wettlaufer J.S., et al., Grain boundary melting in ice. The Journal of Chemical Physics, 2013, 138(12): 124707.
[36] Chen C., Huang H., Mo X., et al., Insights into the kinetic processes of solute migration by unidirectional freezing in porous media with micromodel visualization at the pore-scale. Science of the Total Environment, 2021, 784: 147178.
[37] Yan Z., Tongshuai L., Yuanqing T., et al., The migration law of magnesium ions during freezing and melting processes. Environmental Science and Pollution Research, 2021, 29(18): 26675–26687.
[38] Meyer C.R., Bellamy J., Rempel A.W., Subtemperate regelation exhibits power-law premelting. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2024, 480: 2290.