[1] Li Y., Jia Y., Jin M., et al., Experimental investigations on NOx emission and combustion dynamics in an axial fuel staging combustor. Journal of Thermal Science, 2022, 31: 198–206.
[2] Yang H., Zhang Z., The effects of slotted nozzle arrangement on reacting characteristics in a premixed syngas jet in vitiated crossflow. International Journal of Hydrogen Energy, 2024, 60: 623–635.
[3] Liu X., Shao W., Liu C., et al., Numerical study of a high-hydrogen micromix model burner using flamelet-generated manifold. International Journal of Hydrogen Energy, 2021, 46: 20750–20764.
[4] Hughes M.J., Berry J.D., Zhao W., et al., DLN evo combustion technology development for a high-hydrogen flexible F-class retrofit. Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 3A: Combustion, Fuels, and Emissions. Boston, Massachusetts, USA. June 26–30, 2023. V03AT04A040. ASME.
DOI: https://doi.org/10.1115/GT2023-101797.
[5] Liu X., Shao W., Tian Y., et al., Investigation of H2/CH4-air flame characteristics of a micromix model burner at atmosphere pressure condition.. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels, and Emissions. Oslo, Norway. June 11–15, 2018. V04BT04A015. ASME. DOI: https://doi.org/10.1115/GT2018-76276.
[6] York W.D., Romig B.W., Hughes M.J.,et al., Premixed pilot flames for improved emissions and flexibility in a heavy duty gas turbine combustion system. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Montreal, Quebec, Canada. June 15–19, 2015. V04BT04A067. ASME.
DOI: https://doi.org/10.1115/GT2015-44102.
[7] Yang H., Zhang Z., Li K.. Suggestion on axial staged mild combustion considering the variable load. Proceedings of Global Power and Propulsion Society: GPPS-TC-2022-47. Chania. September 12‒14, 2022.
[8] Xing C., Liu L., Qiu P., et al., Research on combustion performance of a micro-mixing combustor for methane-fueled gas turbine. Journal of the Energy Institute, 2022, 103: 72–83.
[9] Asai T., Miura K., Abe K., et al., Development of a dry low NOx combustor for dual gaseous fuels of natural gas and petroleum gas. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 4A: Combustion, Fuels, and Emissions. Oslo, Norway, 2018. V04AT04A064. ASME. DOI: https://doi.org/10.1115/GT2018-75891.
[10] Wang Y., Sohn C.H., Effects of swirl premixed flame interaction on NOx emission in a gas turbine combustor with multi-burners. Journal of the Energy Institute, 2023, 109: 101274.
[11] Liu Z., Xiong Y., Yang N., et al., Comparison of combustion characteristics of mild model combustor and multi-nozzle array model combustor fueled hydrogen-methane mixtures. International Journal of Hydrogen Energy, 2023, 48(81): 31802–31812.
[12] Lee T., Kim K.T., Combustion dynamics of lean fully-premixed hydrogen-air flames in a mesoscale multinozzle array. Combustion and Flame, 2020, 218: 234–246.
[13] Lee B.J., Kim J.S., Lee S., Enhancement of blowout limit by the interaction of multiple nonpremixed jet flames. Combustion Science and Technology, 2004, 176(4): 481–497.
[14] Bhagwan R., Schwagerus A., Weis C., et al., Combustion characteristics of natural gas fueled, premixed turbulent jet flame arrays confined in a hexagonal combustor. Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 4A: Combustion, Fuels, and Emissions. Phoenix, Arizona, USA, 2019. V04AT04A018. ASME. DOI: https://doi.org/10.1115/GT2019-90286.
[15] Hussain M., Abdelhafez A., Nemitallah M.A., et al., A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines. Applied Energy, 2020, 279: 115818.
[16] Schwagerus A., Habisreuther P., Zarzalis N., Lean-blow-out simulation of natural gas fueled, premixed turbulent jet flame arrays with LES and FGM-modeling. Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 3A: Combustion, Fuels, and Emissions. Virtual, Online, 2021. V03AT04A026. ASME. DOI: https://doi.org/10.1115/GT2021-58938.
[17] Zhang Y., Zhang H., Tian L., et al.,Temperature and emissions characteristics of a micro-mixing injection hydrogen-rich syngas flame diluted with N2. International Journal of Hydrogen Energy, 2015, 40(36): 12550–12559.
[18] Choi J., Rajasegar R., Lee W., et al., Hydrogen enhancement on a mesoscale swirl stabilized burner array. International Journal of Hydrogen Energy, 2021, 46(46): 23906–23915.
[19] Yang H., Wu Y., Zeng X., et al., Partially-premixed combustion characteristics and thermal performance of micro jet array burners with different nozzle spacings. Journal of Thermal Science, 2021, 30(5): 1718–1730.
[20] Webb B.M., Harper J., Steele R., et al., Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future. Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. Volume 6: Education; Electric Power; Energy Storage; Fans and Blowers. Boston, Massachusetts, USA, 2023. V006T08A011. ASME.
DOI: https://doi.org/10.1115/GT2023-103962.
[21] Asai T., Dodo S., Karishuku M., et al., Performance of multiple-injection dry low-NOx combustors on hydrogen-rich syngas fuel in an IGCC pilot plant. Journal of Engineering for Gas Turbines and Power, 2015, 137(9): 091504.
[22] Xing C., Chen X., Qiu P., et al., Effect of fuel flexibility on combustion performance of a micro-mixing gas turbine combustor at different fuel temperatures. Journal of the Energy Institute, 2022, 102: 100–117.
[23] Choi Y., Kim K.T., Mode shape-dependent thermoacoustic interactions between a lean-premixed primary flame and an axially-staged transverse reacting jet. Combustion and Flame, 2023, 255: 112884.
[24] Sayad P., Schonborn A., Klingmann J., Experimental investigations of the lean blowout limit of different syngas mixtures in an atmospheric, premixed, variable-swirl burner. Energy & Fuels 2013, 27(5): 2783–2793.
[25] Lai S., Chen D., Zhang J., et al., Blow-off limits, flame structure, and emission characteristics of lean partially premixed swirl-stabilized flames with NH3/CH4. Energy & Fuels, 2024, 38(5): 4721–4732.
[26] Shanbhogue S.J., Husain S., Lieuwen T., Lean blowoff of bluff body stabilized flames: Scaling and dynamics. Progress in Energy and Combustion Science, 2009, 35(1): 98–120.
[27] Guiberti T.F., Cutcher H., Roberts W.L., et al., Influence of pilot flame parameters on the stability of turbulent jet flames. Energy & Fuels, 2017, 31(3): 2128–2137.
[28] Zong C., Ji C., Cheng J., et al., Effects of pilot fuel ratio on combustion process: Flow field structure and pollutant emissions. Journal of Thermal Science, 2023, 32(6): 2321–2335.
[29] Pignatelli F., Kim H., Subash A.A., et al., Pilot impact on turbulent premixed methane/air and hydrogen-enriched methane/air flames in a laboratory-scale gas turbine model combustor. International Journal of Hydrogen Energy, 2022, 47(60): 25404–25417 .
[30] Feuk H., Pignatelli F., Subash A., et al., Impact of methane and hydrogen-enriched methane pilot injection on the surface temperature of a scaled-down burner nozzle measured using phosphor thermometry. International Journal of Turbomachinery, Propulsion and Power, 2022, 7(4): 29.
[31] Akhtar S., Piffaretti S., Shamim T., Numerical investigation of flame structure and blowout limit for lean premixed turbulent methane-air flames under high pressure conditions. Appllied Energy, 2018, 228: 21–32.
[32] Pope, S.B., Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 2004, 6(1): 35.
[33] Nassini P.C., Pampaloni D., Andreini A., et al., Large eddy simulation of lean blow-off in a premixed swirl stabilized flame. Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 4A: Combustion, Fuels, and Emissions. Phoenix, Arizona, USA, 2019, V04AT04A053, ASME. DOI: https://doi.org/10.1115/GT2019-90856.
[34] Nassini P.C., Pampaloni D., Meloni R., et al., Lean blow-out prediction in an industrial gas turbine combustor through a LES-based CFD analysis. Combustion and Flame, 2021, 229: 111391.
[35] Smith G.P., Golden D.M., Frenklach M., et al., DOI: http://www.Me.Berkeley.Edu/gri_mech/.
[36] Gülen S.C., Gas turbines for electric power generation, first ed., Cambridge University Press, Cambridge, UK, 2019.