[1] Simon T.W., Piggush J.D., Turbine endwall aerodynamics and heat transfer. Journal of Propulsion and Power, 2006, 22(2): 301–312.
[2] Chyu M.K., Heat transfer near turbine nozzle endwall. Annals of the New York Academy of Sciences, 2001, 934: 27–36.
[3] Pu J., Wan J.H., Ma S.Y., et al., An experimental investigation of geometric effect of upstream converging slot-hole on end-wall film-cooling and secondary vortex characteristics. Experimental Thermal and Fluid Science, 2015, 69: 58–72.
[4] Li X.Y., Ren J., Jiang H.D., Film-cooling effectiveness distribution of cylindrical hole injections at different locations on a vane endwall. International Journal of Heat and Mass Transfer, 2015, 90: 1–14.
[5] Colban W., Thole K.A., Influence of hole shape on the performance of a turbine vane endwall film-cooling scheme. International Journal of Heat and Fluid Flow, 2007, 28(3): 341–356.
[6] Colban W., Thole K.A., Heandler M., A comparison of cylindrical and fan-shaped film-cooling holes on a vane endwall at low and high freestream turbulence levels. ASME Journal of Turbomachinery, 2008, 130(3): 031007.
[7] Barigozzi G., Benzoni G., Franchini G., et al., Fan-shaped hole effects on the aero-thermal performance of a film-cooled endwall. ASME Journal of Turbomachinery, 2006, 128(1): 43–52.
[8] Barigozzi G., Benzoni G., Perdichizzi A., et al., Effects of trenched holes on film-cooling of a contoured endwall nozzle vane. ASME Journal of Turbomachinery, 2012, 134(4): 041009.
[9] Sundaram N., Thole K.A., Film-cooling flowfields with trenched holes on an endwall. ASME Journal of Turbomachinery, 2009, 131(4): 041007.
[10] Yang X., Zhao Q., Feng Z.P., Experimental evaluation of cooling effectiveness from novel film holes over turbine endwalls with inlet swirl. International Journal of Thermal Sciences, 2022, 174: 107434.
[11] Yang X., Zhang K., Yao J., et al., Experimental and numerical investigations of vane endwall film-cooling with different cooling hole configurations. Aerospace Science and Technology, 2023, 142: 108658.
[12] Li X.Y., Ren J., Jiang H.D., Multi-row film-cooling characteristics on a vane endwall. International Journal of Heat and Mass Transfer, 2016, 92: 23–33.
[13] Shiau C.C., Sahin I., Wang N., et al., Turbine vane endwall film-cooling comparison from five film-hole design patterns and three upstream injection angles. ASME Journal of Thermal Science and Engineering Applications, 2019, 11(3): 031012.
[14] Zhang J., Liu C., Zhou L., et al., Experimental study of film-cooling characteristics of annular cascade endwall with a partitioned film-cooling layout. International Journal of Thermal Sciences, 2022, 182: 107821.
[15] Harasgama S.P., Burton C.D., Film-cooling research on the endwall of a turbine nozzle guide vane in a short duration annular cascade: part 1-experimental technique and results. ASME Journal of Turbomachinery, 1992, 114(4): 734–740.
[16] Yang X., Liu Z., Zhao Q., et al., Comparisons of endwall overall effectiveness from two film hole distribution patterns at low and high exit Mach numbers. ASME Journal of Turbomachinery, 2020, 142(10): 101007.
[17] Friedrichs S., Hodson H.P., Dawes W.N., The design of an improved endwall film-cooling configuration. ASME Journal of Turbomachinery, 1999, 121(4): 772–780.
[18] Knost D.G., Thole K.A., Adiabatic effectiveness measurements of endwall film-cooling for a first-stage vane. ASME Journal of Turbomachinery, 2005, 127(2): 297–305.
[19] Liu J., Du W., Zhang G., et al., Design of full-scale endwall film-cooling of a turbine vane. ASME Journal of Heat Transfer, 2020, 142(2): 022201.
[20] Li X.Y., Ren J., Jiang H.D., Influence of different film-cooling arrangements on endwall cooling. International Journal of Heat and Mass Transfer, 2016, 102: 348–359.
[21] Su H., Pu J., Wang J., et al., An experimental investigation of cooling characteristics at a vane end-wall with a locally enhanced hole-layout. Experimental Thermal and Fluid Science, 2018, 96: 137–145.
[22] Satta F., Tanda G., Effect of discrete-hole arrangement on film-cooling effectiveness for the endwall of a turbine blade cascade. Applied Thermal Engineering, 2015, 91: 507–514.
[23] He K., Li J., Yan X., Numerical investigations into heat transfer and film-cooling effect on a transonic blade endwall. Applied Thermal Engineering, 2018, 129: 934–952.
[24] Wu H., Yang X., Zhao Q., et al., Improving turbine endwall overall cooling effectiveness using curtain cooling and redistributed film-hole layouts: an experimental and computational study. ASME Journal of Thermal Science and Engineering Applications, 2024, 16(3): 031010.
[25] Shiau C.C., Chen A.F., Han J.C., et al., Full-scale turbine vane endwall film-cooling effectiveness distribution using pressure-sensitive paint technique. ASME Journal of Turbomachinery, 2016, 138(5): 051002.
[26] Zhang W., Liu Z., Song Y., et al., Optimization of discrete film hole arrangement on a turbine endwall with middle passage gap. ASME Journal of Heat and Mass Transfer, 2024, 146(8): 083801.
[27] Zhang L.J., Jaiswal R.S., Turbine nozzle endwall film-cooling study using pressure-sensitive paint. ASME Journal of Turbomachinery, 2001, 123(4): 730–738.
[28] Thole K.A., Knost D.G., Heat transfer and film-cooling for the endwall of a first stage turbine vane. International Journal of Heat and Mass Transfer, 2005, 48: 5255–5269.
[29] Yang X., Liu Z., Zhao Q., et al., Measurements of detailed heat transfer characteristics on a high-pressure turbine vane endwall with coolant injection. Experimental Thermal and Fluid Science, 2019, 109: 109888.
[30] Müller G., Landfester C., Böhle M., et al., Turbine vane endwall film-cooling effectiveness of different purge slot configurations in a linear cascade. ASME Journal of Turbomachinery, 2020, 142(3): 031008.
[31] Zhu P., Song L., Li J., et al., Effects of upstream slot geometry on the endwall aerothermal performance of a gas turbine blade under different ejection angle conditions. International Journal of Heat and Mass Transfer, 2017, 115: 652–669.
[32] Tao Z., Yao Y., Zhu P., et al., Experimental and numerical study on film-cooling effectiveness of an annular cascade endwall with different slot configuration. International Journal of Thermal Sciences, 2020, 158: 106517.
[33] Du K., Li Z., Li J., et al., Influence of the upstream slot geometry on the endwall cooling and phantom cooling of vane suction side surface. Applied Thermal Engineering, 2017, 121: 688–700.
[34] Zhang J., Liu C., Zhang L., et al., Experimental study of heat transfer and film cooling performance of upstream ejected coolant on a turbine endwall. Journal of Thermal Science, 2023, 32: 718–728.
[35] Yu Z.Q., Liu J.J., Li C., et al., Experimental investigation of the film-cooling performance on the blade endwall with diffusion slot holes and stator-rotator purge. ASME Journal of Turbomachinery, 2021, 143(5): 051009.
[36] Hu J.J., An B.T., Film-cooling effectiveness on a turbine blade platform with various hole geometries and layouts. ASME Journal of Heat and Mass Transfer, 2024, 146(11): 113801.
[37] Yu Z.Q., Li C., An B.T., et al., Experimental investigation of film-cooling effectiveness on a gas turbine blade pressure surface with diffusion slot holes. Applied Thermal Engineering, 2020, 168: 114851.
[38] Hu J.J., An B.T., Film-cooling effectiveness on pressure surface and suction surface of turbine guide vane with diffusion slot holes. ASME Journal of Turbomachinery, 2023, 145(10): 101007.
[39] Hu J.J., An B.T., Multirow film-cooling effectiveness of vertically oriented slot cross-section diffusion holes on a turbine nozzle guide vane suction surface. ASME Journal of Turbomachinery, 2025, 147(6): 061015.
[40] Pu J., Wang W., Wang J.H., et al., Experimental study of free-stream turbulence intensity effect on overall cooling performances and solid thermal deformations of vane laminated end-walls with various internal pin-fin configurations. Applied Thermal Engineering, 2020, 173: 115232.
[41] Gritsch M., Schulz A., Wittig S., Discharge coefficient measurements of film-cooling holes with expanded exits. ASME Journal of Turbomachinery, 1998, 120(3): 557–563.
[42] An B.T., Liu J.J., Zhou S.J., Effects of inclination angle, orientation angle, and hole length on film-cooling effectiveness of rectangular diffusion holes. ASME Journal of Turbomachinery, 2018, 140(7): 071003.