[1] Schwanekamp T., System studies on active thermal protection of a hypersonic suborbital passenger transport vehicle. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2014, pp: 2372. DOI: 10.2514/6.2014-2372.
[2] Liu J., Xu M., Guo W., et al., Flow and heat transfer mechanism of a regenerative cooling channel mounted with pin-fins using supercritical CO2 as coolant. International Journal of Thermal Sciences, 2025, 208: 109425. DOI: 10.1016/j.ijthermalsci.2024.109425.
[3] Wang B., Ji S., Huadan C., et al., Heat transfer enhancement in gas turbine blade trailing-edge internal cooling channel with high aspect ratio twisted fins arranged on sidewalls. International Journal of Thermal Sciences, 2025, 210: 109647.
DOI: 10.1016/j.ijthermalsci.2024.109647.
[4] Jiang Y., Qi Y., Wang L., et al., Flow and heat transfer of hydrocarbon fuel in a channel with staggered-side-gap micro ribs. Journal of Thermal Science, 2025, 34: 524‒541. DOI: 10.1007/s11630-024-2073-2.
[5] Zhou W., Wang K., Zhang T., et al., Novel shaped sweeping jet for improved film cooling and anti-deposition performance. Journal of Thermal Science, 2024, 33(6): 2089–2096.
DOI: 10.1007/s11630-024-2048-3.
[6] Park J., Kim J.H., Kang C., Film-cooling performance with various hole length to diameter ratios for cylindrical and laidback fan-shaped holes with an inlet groove. Journal of Thermal Science, 2025, 34: 607–625.
DOI: 10.1007/s11630-024-2060-7.
[7] Lin J., Li H., You R., et al., Experimental study on the film cooling characteristics of three complex tip structures. Journal of Thermal Science, 2023, 32(4): 1378–1392. DOI: 10.1007/s11630-023-1831-x.
[8] Han S., Xiang Z., Xing J., et al., Numerical simulation of composite swirl/film double-wall cooling structures and chamber designs for enhanced overall cooling effectiveness. International Journal of Heat and Mass Transfer, 2024, 228: 125664.
DOI: 10.1016/j.ijheatmasstransfer.2024.125664.
[9] Wang Y., Wang L., Zhou Y., et al., Research progress on transpiration cooling technology in force-thermal concentrated environments. International Journal of Heat and Mass Transfer, 2025, 236: 126262.
DOI: 10.1016/j.ijheatmasstransfer.2024.126262.
[10] Mullin K.M., Martin J.H., Roper C.S., et al., Transpiration cooling of a porous Nb-based alloy in high heat flux conditions. International Journal of Thermal Sciences, 2024, 196: 108758.
DOI: 10.1016/j.ijthermalsci.2023.108758.
[11] Guo J., Lin G., Bu X., et al., Parametric study on the heat transfer of a blunt body with counterflowing jets in hypersonic flows. International Journal of Heat and Mass Transfer, 2018, 121: 84–96.
DOI: 10.1016/j.ijheatmasstransfer.2017.12.115.
[12] Liu H., Wang Z., Ding M., Fluid-thermal coupled analysis of heat reduction by the opposing jet in hypersonic flows. International Journal of Heat and Mass Transfer, 2020, 147: 119003.
DOI: 10.1016/j.ijheatmasstransfer.2019.119003.
[13] Ahmed M.Y.M., Qin N., Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective. Progress in Aerospace Sciences, 2020, 112: 100585.
DOI: 10.1016/j.paerosci.2019.100585.
[14] Stalder J.R., Inouye M., A method of reducing heat transfer to blunt bodies by air injection. NACA-RM-A56B27a, 1956.
[15] Warren C.H.E., An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body. Journal of Fluid Mechanics, 1960, 8(3): 400–417.
DOI: 10.1017/S0022112060000694.
[16] Hayashi K., Aso S., Tani Y., Experimental study on thermal protection system by opposing jet in supersonic flow. Journal of Spacecraft and Rockets, 2006, 43(1): 233–235. DOI: 10.2514/1.15332.
[17] Meyer B., Nelson H.F., Riggins D.W., Hypersonic drag and heat-transfer reduction using a forward-facing jet. Journal of Aircraft, 2001, 38(4): 680–686.
DOI: 10.2514/2.2819.
[18] Wang Z., Zhang X., Parametric research on drag reduction and thermal protection of blunt-body with opposing jets of forward convergent nozzle in supersonic flows. Acta Astronautica, 2022, 190: 218–230.
DOI: 10.1016/j.actaastro.2021.10.021.
[19] Shen B., Liu W., Thermal protection performance of opposing jet generating with solid fuel. Acta Astronautica, 2018, 144: 90–96.
DOI: 10.1016/j.actaastro.2017.12.024.
[20] Shen B.X., Liu W.Q., Yin L., Drag and heat reduction efficiency research on opposing jet in supersonic flows. Aerospace Science and Technology, 2018, 77: 696–703. DOI: 10.1016/j.ast.2018.03.051.
[21] Huang J., Yao W.X., Jiang Z.P., Penetration mode effect on thermal protection system by opposing jet. Acta Astronautica, 2019, 160: 206–215.
DOI: 10.1016/j.actaastro.2019.03.023.
[22] Zhang W.Q., Wang X.W., Zhang Z.J., et al., Numerical investigation on the jet characteristics and the heat and drag reductions of opposing jet in hypersonic nonequilibrium flows. Aerospace, 2022, 9(10): 554.
DOI: 10.3390/aerospace9100554.
[23] Shen B.X., Liu W.Q., Thermal protection performance of a low pressure short penetration mode in opposing jet and its application. International Journal of Heat and Mass Transfer, 2020, 163: 120466.
DOI: 10.1016/j.ijheatmasstransfer.2020.120466.
[24] Lu H.B., Liu W.Q., Numerical investigation on properties of attack angle for an opposing jet thermal protection system. Chinese Physics B, 2012, 21(8): 084401.
DOI: 10.1088/1674-1056/21/8/084401.
[25] Xu H., Li X., Ren J., Angle-of-attack characteristics of opposing jet for improving drag and heat reduction. Physics of Fluids, 2024, 36(7): 076116.
DOI: 10.1063/5.0219134.
[26] Huang W., A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combination. Journal of Zhejiang University-Science A, 2015, 16(7): 551–561. DOI: 10.1631/jzus.A1500021.
[27] Morimoto N., Yoon J.Y., Aso S., et al., Reduction of aerodynamic heating with opposing jet through extended nozzle in high enthalpy flow. 52nd Aerospace Sciences Meeting, 2014. DOI: 10.2514/6.2014-0705.
[28] Meng Y., Yan L., Huang W., et al., Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet. Aerospace Science and Technology, 2021, 115: 106840. DOI: 10.1016/j.ast.2021.106840.
[29] Hamza M., Khan S.B., Maqsood A., Geometric optimization of blunt bodies with aerodisk and opposing jet for wave drag and heat reduction. Aerospace, 2022, 9(12): 800–819. DOI: 10.3390/aerospace9120800.
[30] Zhu L., Chen X., Li Y., et al., Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach. Acta Astronautica, 2018, 142: 300–313. DOI: 10.1016/j.actaastro.2017.11.001.
[31] Wang Z., Zhang X., Research on a novel combined shock control mechanism for thermal protection and drag reduction in hypersonic compressible flow field. International Journal of Heat and Mass Transfer, 2023, 201: 123592.
DOI: 10.1016/j.ijheatmasstransfer.2022.123592.
[32] Vali S.E., Abbasi S., Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configuration. International Journal of Heat and Mass Transfer, 2022, 194: 123034.
DOI: 10.1016/j.ijheatmasstransfer.2022.123034.
[33] Lu H.B., Liu W.Q., Investigation of thermal protection system by forward-facing cavity and opposing jet combinatorial configuration. Chinese Journal of Aeronautics, 2013, 26(2): 287–293.
DOI: 10.1016/j.cja.2013.02.005.
[34] Lu H.B., Liu W.Q., Research on thermal protection mechanism of forward-facing cavity and opposing jet combinatorial thermal protection system. Heat and Mass Transfer, 2014, 50: 449–456.
DOI: 10.1007/s00231-013-1247-3.
[35] Shen B.X., Liu W.Q., Thermal protection performance of a low pressure short penetration mode in opposing jet and its application. International Journal of Heat and Mass Transfer, 2020, 163: 120466.
DOI: 10.1016/j.ijheatmasstransfer.2020.120466.
[36] Shen B.X., Liu W.Q., Insulating and absorbing heat of transpiration in a combinational opposing jet and platelet transpiration blunt body for hypersonic vehicle. International Journal of Heat and Mass Transfer, 2019, 138: 314–325.
DOI: 10.1016/j.ijheatmasstransfer.2019.04.057.
[37] Shen B.X., Yin L., Liu H.P., et al., Thermal protection characteristics for a combinational opposing jet and platelet transpiration cooling nose-tip. Acta Astronautica, 2019, 155: 143–152.
DOI: 10.1016/j.actaastro.2018.11.052.
[38] Sriram R., Jagadeesh G., Film cooling at hypersonic Mach numbers using forward facing array of micro-jets. International Journal of Heat and Mass Transfer, 2009, 52(15–16): 3654–3664.
DOI: 10.1016/j.ijheatmasstransfer.2009.02.035.
[39] Xu H.N., Tang Z.Y., et al., Multi parameters control mechanism on drag and heat reduction of opposing jet. AIAA SCITECH 2024 Forum, 2024.
DOI: 10.2514/6.2024-2139.
[40] Qu F., Chen J., Sun D., et al., A grid strategy for predicting the space plane’s hypersonic aerodynamic heating loads. Aerospace Science and Technology, 2019, 86: 659–670. DOI: 10.1016/j.ast.2019.01.049.
[41] Sohail M.A., Chao Y., Zhang H., et al., CFD on hypersonic flow geometries with aeroheating. AIP Conference Proceedings, 2012, 1493: 917‒922.
DOI: 10.1063/1.4765597.