[1] D’Anna A., Combustion-formed nanoparticles. Proceedings of the Combustion Institute, 2009, 32(1): 593–613.
[2] Wang H., Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 2011, 33(1): 41–67.
[3] Kholghy M.R., Afarin Y., Sediako A.D., et al., Comparison of multiple diagnostic techniques to study soot formation and morphology in a diffusion flame. Combustion and Flame, 2017, 176: 567–583.
[4] Deng S., Koch J.A., Mueller M.E., et al., Sooting limits of nonpremixed n-heptane, n-butanol, and methyl butanoate flames: Experimental determination and mechanistic analysis. Fuel, 2014, 136: 122–129.
[5] Li Z., Amin H.M.F., Liu P., et al., Effect of dimethyl ether (DME) addition on sooting limits in counterflow diffusion flames of ethylene at elevated pressures. Combustion and Flame, 2018, 197: 463–470.
[6] Khare R., Vlavakis P., Von Langenthal T., et al., Experimental investigation of the effect of hydrogen addition on the sooting limit and structure of methane/air laminar counterflow diffusion flames. Fuel, 2022, 324: 124506.
[7] Zhao X., Xu L., Chen C., et al., Experimental and numerical study on sooting transition process in iso-octane counterflow diffusion flames: Diagnostics and combustion chemistry. Journal of the Energy Institute, 2021, 98: 282–293.
[8] Zou Z.Y., Sun H.W., Chen C., et al., Quantitative optical diagnostics on macroscopic soot onset for ethylene diffusion flames with ethyl ester addition. Optics Express, 2022, 30: 21410–21422.
[9] Li Z., Lou C., Zou C., et al., Investigation of soot inception limits and chemiluminescence characteristics of laminar coflow diffusion flames in C/O ratio space. Fuel, 2022, 327: 125140.
[10] Nakamura H., Suzuki S., Tezuka T., et al., Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2015, 35(3): 3397–3404.
[11] Ergut A., Levendis Y.A., Richter H., et al., The effect of equivalence ratio on the soot onset chemistry in one-dimensional, atmospheric-pressure, premixed ethylbenzene flames. Combustion and Flame, 2007, 151: 173–195.
[12] Tang Q.X., Wang M.D., You X.Q., Measurements of sooting limits in laminar premixed burner-stabilized stagnation ethylene, propane, and ethylene/toluene flames. Fuel, 2019, 235: 178–184.
[13] Xu L., Zhou M.X., Wang Y., et al., Probing sooting limits in counterflow diffusion flames via multiple optical diagnostic techniques. Experimental Thermal and Fluid Science, 2022, 136: 110679.
[14] Lin B., Gu H., Guan B., et al., Size evolution of soot particles from gasoline and n-heptane/toluene blend in a burner stabilized stagnation flame. Fuel, 2017, 203: 135–144.
[15] Camacho J., Liu C., Gu C., et al., Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame. Combustion and Flame, 2015, 162(10): 3810–3822.
[16] Yapp E.K.Y., Chen D., Akroyd J., et al., Numerical simulation and parametric sensitivity study of particle size distributions in a burner-stabilised stagnation flame. Combustion and Flame, 2015, 162(6): 2569–2581.
[17] Feng L., Wang Q., Liu H., et al., Effect of the stagnation plate on PAHs, soot and OH distributions in partially premixed laminar flames fueled with a blend of n-heptane and toluene. Combustion and Flame, 2021, 227: 52–64.
[18] Liu P., Zhang Y., Wang L., et al., Chemical mechanism of exhaust gas recirculation on polycyclic aromatic hydrocarbons formation based on laser-induced fluorescence measurement. Energy & Fuels, 2018, 32(6): 7112–7124.
[19] Tang Q., Ge B., Ni Q., et al., Soot formation characteristics of n-heptane/toluene mixtures in laminar premixed burner-stabilized stagnation flames. Combustion and Flame, 2015, 162(6): 2569–2581.
[20] Liu S., Chan T.L., He Z., et al., Soot formation and evolution characteristics in premixed methane/ ethylene-oxygen-argon burner-stabilized stagnation flames. Fuel, 2019, 242: 871–882.
[21] Abid A.D., Camacho J., Sheen D.A., et al., Quantitative measurement of soot particle size distribution in premixed flames-the burner-stabilized stagnation flame approach. Combustion and Flame, 2009, 156(10): 1862–1870.
[22] Tognoni E., Multi-diagnostic approach to characterize the onset of formation of nanoparticles in a premixed laminar ethylene/air flame. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(2): 191–201.