[1] Rowe D.M., CRC handbook of thermoelectrics. London: CRC press, chapter 2, 1995.
[2] Rahill M., Comparison of hydrogen and propane fuels (Brochure). National Renewable Energy Laboratory (NREL), https://www.nrel.gov/docs/fy09osti/45408.pdf. 2009.
[3] Yan Q., Kanatzidis M.G., High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21(5): 503–513.
[4] Li G., Zheng Y., Lv H., et al., Micro combined heat and power system based on stove-powered thermoelectric generator. Renewable Energy, 2020, 155: 160–171.
[5] Li G., Zhu Z., Zheng Y., et al., Development of a powerful hybrid micro thermoelectric generator based on an ultrahigh capacity miniature combustor. Applied Thermal Engineering, 2022, 206: 118039.
[6] Puthran S., Hegde G.S., Prabhu A.N., Review of chalcogenide-based materials for low-, mid-, and high-temperature thermoelectric applications. Journal of Electronic Materials, 2024, 53(10): 5739–5768.
[7] Li D., Shi X.L., Zhu J., et al.., High-performance flexible p-type Ce-filled Fe3CoSb12 skutterudite thin film for medium-to-high-temperature applications. Nature Communications, 2024, 15(1): 4242.
[8] Missoum H., Talbi K., Khelfaoui F., et al., High ZT of new half-Heusler LiXZ (X=La, Y and Z=Ge, Si) alloys at room temperature. Journal of Physics and Chemistry of Solids, 2024, 193: 112186.
[9] Xu Z. Shi X.L., Zhang Y., et al., Na/Bi-co-doping and heterogeneous interfaces leading to enhanced thermoelectric performance of p-Type Mg3Sb2-based Zintls. Chemical Engineering Journal, 2024, 498: 155147.
[10] Liu D., Wang D., Hong T., et al., Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science, 2023, 380(6647): 841–846.
[11] Justl A.P., Bux S.K., Kauzlarich S.M., Evolution of thermoelectric and oxidation properties in Lu-substituted Yb14MnSb11. ACS Applied Energy Materials, 2023, 6(1): 471–483.
[12] Pandit S., Mal R., Purwar A., Kumari K., Waste heat regeneration from thermoelectric generator based improved biomass cookstove (TIBC): Modelling of TEG system utilizing DC-DC converter with fuzzy logic MPPT. Energy Conversion and Management, 2024, 300: 117977.
[13] Li G., Zhang X., Zheng Y., et al., An ultra-high efficient micro combined heat and power cogeneration system based on gas combustion powered thermoelectric generator. Applied Thermal Engineering, 2023, 222: 119941.
[14] Miao L., Zhu S., Liu C., et al., Comfortable wearable thermoelectric generator with high output power. Nature Communications, 2024, 15(1): 8516.
[15] Xue F., Chen L., Li C., et al., A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Science China Technological Sciences, 2022, 65(4): 893‒902.
[16] Rostami M., Manshadi M.D., Farajollahi A.H., et al., Introducing and evaluation of a new propulsion system composed of solid oxide fuel cell and downstream cycles, usage in unmanned aerial vehicles. International Journal of Hydrogen Energy, 2022, 47(28): 13693–13709.
[17] Jia Y., Sardari F., Study of employing a thermoelectric generator and an alkali metal thermal electric converter for waste heat recovery of a solid oxide fuel cell. Alexandria Engineering Journal, 2023, 69: 403–418.
[18] Lan Y., Lu J., Mu L., et al., Waste heat recovery from exhausted gas of a proton exchange membrane fuel cell to produce hydrogen using thermoelectric generator. Applied Energy, 2023, 334: 120687.
[19] Wang Y., Tong X., Wang H., et al., Natural gas pressure reduction station self-powered by fire thermoelectric generator. Journal of Thermal Science, 2022, 31(3): 840–853.
[20] Li G.N., Yi M.B., Tulu M.B., et al., Miniature self-powering and self-aspirating combustion-powered thermoelectric generator burning gas fuels for combined heat and power supply. Journal of Power Sources, 2021, 506: 230263.
[21] Li G., Zheng Y., Guo W., et al., Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics. Applied Energy, 2020, 272: 115234.
[22] Alegría P., Catalán L., Araiz M., et al., Thermoelectric generator for high temperature geothermal anomalies: Experimental development and field operation. Geothermics, 2023, 110: 102677.
[23] Cotfas D.T., Enesca A., Cotfas P.A., Enhancing the performance of the solar thermoelectric generator in unconcentrated and concentrated light. Renewable Energy, 2024, 221: 119831.
[24] Luo D., Yan Y., Li Y., et al., Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power. Energy, 2023, 281: 128319.
[25] Li G., Ying J., Zheng Y., et al., Analytical design model for waste heat thermoelectric generator and experimental verification. Energy Conversion and Management, 2022, 252: 115034.
[26] Li T., Liu Y., Zhang Y., et al., Comprehensive modeling and characterization of Chang’E-4 radioisotope thermoelectric generator for lunar mission. Applied Energy, 2023, 336: 120865.
[27] Allen D.T., Wonsowski J., Thermoelectric self-powered hydronic heating demonstration. 16th International Conference on Thermoelectrics, 1997.
DOI: 10.1109/ICT.1997.667594.
[28] Alien D.T., Mallon W.C., Further development of “self-powered boilers”. 18th International Conference on Thermoelectrics, 1999. DOI: 10.1109/ICT.1999.843339.
[29] Schaevitz S., Franz A., Jensen K., et al., A combustion-based MEMS thermoelectric power generator. 11th International Conference on Solid State Sensors and Actuators, 2001.
DOI: 10.1007/978-3-642-59497-7_6.
[30] Vican J., Gajdeczko B.F., Dryer F.L., et al., Development of a microreactor as a thermal source for microelectromechanical systems power generation. Proceedings of the Combustion Institute, 2002, 29(1): 909–916.
[31] Yoshida K., Tanaka S., Tomonari S., et al., High-energy density miniature thermoelectric generator using catalytic combustion. Journal of Microelectromechanical Systems, 2006, 15(1): 195–203.
[32] Norton D., Voit K., Brüggemann T., et al., Portable power generation via integrated catalytic microcombustion- thermoelectric devices. 24th Proceedings for the Army Science Conference, 2004.
DOI: 10.1142/9789812772572_0038.
[33] Federici J.A., Norton D.G., Brüggemann T., et al., Catalytic microcombustors with integrated thermoelectric elements for portable power production. Journal of Power Sources, 2006, 161(2): 1469–1478.
[34] Abedi H., Merotto L., Fanciulli C., et al., Study of the performances of a thermoelectric generator based on a catalytic meso-scale H2/C3H8 fueled combustor. Journal of Nanoscience and Nanotechnology, 2017, 17(3): 1592–1600.
[35] Wang W., Zhao Z., Kuang N., et al., Experimental study and optimization of a combustion-based micro thermoelectric generator. Applied Thermal Engineering, 2020, 181: 115431.
[36] Li G., Zhang X., Zheng Y., et al., Development of a powerful miniature hydrogen catalytic combustion powered thermoelectric generator. International Journal of Hydrogen Energy, 2023, 48(58): 22264–22276.
[37] Xie B., Peng Q., Shi Z., et al., Investigation of CH4 and porous media addition on thermal and working performance in premixed H2/air combustion for micro thermophotovoltaic. Fuel, 2023, 339: 127444.
[38] Ding J., E J., Li J., et al., Effect analysis on energy conversion enhancement of porous medium micro-combustor and thermoelectric system and its optimization. Energy Conversion and Management, 2023, 292: 117441.
[39] Jiang L.Q., Zhao D.Q., Guo C.M., et al., Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation. Energy Conversion and Management, 2011, 52(1): 596–602.
[40] Xiao H., Qiu K., Gou X., et al., A flameless catalytic combustion-based thermoelectric generator for powering electronic instruments on gas pipelines. Applied Energy, 2013, 112: 1161–1165.
[41] Aravind B., Khandelwal B., Ramakrishna P.A., et al., Towards the development of a high power density, high efficiency, micro power generator. Applied Energy, 2020, 261: 114386.
[42] Guggilla B.R., Rusted A., Bakrania S., Platinum nanoparticle catalysis of methanol for thermoelectric power generation. Applied Energy, 2019, 237: 155–162.
[43] Uchida S., Lee M., Lee C.H., et al., High-temperature monolithic SiGe thermoelectric device directly heated by catalytic combustion. Applied Physics Letters, 2022, 120(5): 053901.
[44] Shen R., Li G., Zhu Y., et al., Development of a compact high-performance combustion powered thermoelectric generator based on swirl burner. Energy, 2024, 286: 129455.
[45] Yang J., Chen W., Cao B., et al., Si-C foam porous-medium combustion power-generation system for low-calorific-value biomass syngas. Journal of Thermal Science, 2025, 34(1): 206–222.
[46] Zhou Z.G., Zhu D.S., Wu H.X., et al., Modeling, experimental study on the heat transfer characteristics of thermoelectric generator. Journal of Thermal Science, 2013, 22(1): 48–54.
[47] Shang X., Wang Y., Li Q., et al., Modeling of rectangular microchannel heat sink with non-uniform channels and multi-objective optimization. Journal of Thermal Science, 2024, 33(5): 1701–1711.
[48] Li G., Zhu Z., Zheng Y., et al., Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion- powered micro thermoelectric generator. Energy, 2023, 263: 125825.
[49] Shimokuri D., Taomoto Y., Matsumoto R., Development of a powerful miniature power system with a meso-scale vortex combustor. Proceedings of the Combustion Institute, 2017, 36(3): 4253–4260.
[50] Rowe D.M., Min G., Evaluation of thermoelectric modules for power generation. Journal of Power Sources, 1998, 73(2): 193–198.
[51] Li G., Zhu D., Zheng Y., et al., Mesoscale combustor-powered thermoelectric generator with enhanced heat collection. Energy Conversion and Management, 2020, 205: 112403.
[52] Li G., Fan Y., Li Q., et al., A review on micro combustion powered thermoelectric generator: History, state-of- the-art and challenges to commercialization. Renewable and Sustainable Energy Reviews, 2025, 207: 114897.
[53] Li G., Xu Z., Zheng Y., et al., Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows. International Journal of Thermal Sciences, 2016, 108: 123–131.
[54] Yan Y., Tang W., Zhang L., et al., Numerical simulation of the effect of hydrogen addition fraction on catalytic micro-combustion characteristics of methane-air. International Journal of Hydrogen Energy, 2014, 39(4): 1864–1873.
[55] Li G., Li Q., Wang S., et al., Efficient standalone micro thermoelectric generator powered by low noise premixed combustion. Energy, 2024, 308: 132849.