[1] Hu Z.Y., Xu L.F., Li J.Q., et al., A novel diagnostic methodology for fuel cell stack health: Performance, consistency and uniformity. Energy Conversion and Management, 2019, 185: 611–621.
[2] Wang Y.L., Xu H.K., Wang X.D., et al., Multi-sub-inlets at cathode flow-field plate for current density homogenization and enhancement of PEM fuel cells in low relative humidity. Energy Conversion and Management, 2022, 252: 115069.
[3] Sim J.B., Kang M.S., Oh H.Y., et al., The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability. Renewable Energy, 2022, 197: 932–942.
[4] Wang M.L., Hou M., Gao Y.Y., et al., Study of substrate-free microporous layer of proton exchange membrane fuel cells. International Journal of Energy Research, 2022, 46(7): 9782–9793.
[5] Okonkwo P.C., Otor C., A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. International Journal of Energy Research, 2021, 45(3): 3780–3800.
[6] Xia L.C., Ni M., He Q.J., et al., Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Applied Energy, 2021, 300: 117357.
[7] Zhu K.Q., Ding Q., Xu J.H., et al., Optimization of gas diffusion layer thickness for proton exchange membrane fuel cells under steady-state and load-varying conditions. Energy Conversion and Management, 2022, 267: 115915.
[8] Huang T.M., Yi D.X., Ren X., et al., Optimization of gas diffusion layer thickness for high-temperature proton exchange membrane fuel cells. Ionics, 2024, 30(3): 1511–1522.
[9] Zhang Z.Y., Mao J., Wei H.Y., et al., Effect of microporous layer structural parameters on heat and mass transfer in proton exchange membrane fuel cells. Applied Thermal Engineering, 2024, 239: 122083.
[10] Nishimura A., Yamamoto K., Okado T., et al., Impact analysis of MPL and PEM thickness on temperature distribution within PEFC operating at relatively higher temperature. Energy, 2020, 205: 117875.
[11] Xia L.C., Zhang C.Z., Hu M.H., et al., Investigation of parameter effects on the performance of high-temperature PEM fuel cell. International Journal of Hydrogen Energy, 2018, 43(52): 23441–23449.
[12] Xia L.C., Ni M., Xu Q.D., et al., Optimization of catalyst layer thickness for achieving high performance and low cost of high temperature proton exchange membrane fuel cell. Applied Energy, 2021, 294: 117012.
[13] Huang T.M., Huang J., Feng M.C., et al., Optimization of the thickness of catalytic layer for HT-PEMFCs based on genetic algorithm. Energy Reports, 2022, 8: 12905–12915.
[14] Li C.T., Wu S.J., Yu W.L., Parameter design on the multi-objectives of PEM fuel cell stack using an adaptive neuro-fuzzy inference system and genetic algorithms. International Journal of Hydrogen Energy, 2014, 39(9): 4502–4515.
[15] Wang K., Chen H.X., Zhang X.F., et al., Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264: 118468.
[16] Kahveci E.E., Taymaz I., Effect of humidification of the reactant gases in the proton exchange membrane fuel cell. International Journal of Hydrogen Energy 2015, 3(5): 356–359.
[17] Kahveci E.E., Taymaz I., Hydrogen PEMFC stack performance analysis through experimental study of operating parameters by using response surface methodology (RSM). International Journal of Hydrogen Energy, 2022, 47(24): 12293–12303.
[18] Fahr S., Engel F.K., Rehfeldt S., et al., Overview and evaluation of crossover phenomena and mitigation measures in proton exchange membrane (PEM) electrolysis. International Journal of Hydrogen Energy, 2024, 68: 705–721.
[19] Deng Q.H., Meng K., Chen W.S., et al., Investigation and evaluation of heat transfer enhancement for PEMFC under high current density based on a multiphase and non-isothermal electrochemical model. International Journal of Heat and Mass Transfer, 2024, 229: 125738.
[20] Yang L.S., Cui Y., Wang Z., et al., Optimization of the structure and cathode operating parameters of a serpentine PEMFC with longitudinal vortex generators by response surface method. Renewable Energy, 2024, 220: 119692.
[21] Jia C.C., He H.W., Zhou J.M., et al., A performance degradation prediction model for PEMFC based on bi-directional long short-term memory and multi-head self-attention mechanism. International Journal of Hydrogen Energy, 2024, 60: 133–146.
[22] Haddad S., Benghanem M., Hassan B., et al., Parameters optimization of PEMFC model based on gazelle optimization algorithm. International Journal of Hydrogen Energy, 2024, 87: 214–226.
[23] Elfar M.H., Fawzi M., Serry A.S., et al., Optimal parameters identification for PEMFC using autonomous groups particle swarm optimization algorithm. International Journal of Hydrogen Energy, 2024, 69: 1113–1128.
[24] Zhang S.Y., Mao Y.J., Liu F., et al., Multi-objective optimization and evaluation of PEMFC performance based on orthogonal experiment and entropy weight method. Energy Conversion and Management, 2023, 291: 117310.
[25] Wang X.Y., Ni Z.J., Yang Z.Q., et al., Optimization of PEMFC operating parameters considering water management by an integrated method of sensitivity analysis, multi-objective optimization and evaluation. Energy Conversion and Management, 2024, 321: 119057.
[26] Ma X., Zhang X.Q., Yang J.P., et al., Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells. Energy Conversion and Management, 2021, 227: 113579.
[27] Xu Y.M., Fan R.J., Chang G.F., et al., Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model. Energy Conversion and Management, 2021, 248: 114791.
[28] Fan R.J., Chang G.F., Xu Y.M., et al., Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC. Energy, 2023, 262: 125580.
[29] Chen L., Zhang R.Y., He P., et al., Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources 2018, 400: 114–125.
[30] Zhang G.B., Jiao K., Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model. Energy Convers Manage 2018, 176: 409–421.
[31] Xing L., Mamlouk M., Kumar R., et al., Numerical investigation of the optimal Nafion® ionomer content in cathode catalyst layer: An agglomerate two-phase flow modelling. International Journal of Hydrogen Energy, 2014, 39(17): 9087–9104.
[32] Xie B., Zhang G.B., Xuan J., et al., Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer. Energy Conversion and Management, 2019, 199: 112051.
[33] Wang Y.L., Liu T., Sun H., et al., Investigation of dry ionomer volume fraction in cathode catalyst layer under different relative humilities and nonuniform ionomer-gradient distributions for PEM fuel cells. Electrochim Acta, 2020, 353: 136491.
[34] Yang Z.Q., Ni Z.J., Li X.L., et al., Optimization of cathode catalyst layer composition for PEMFC based on an integrated approach of numerical simulation, surrogate model, multi-objective genetic algorithm and evaluation strategy. International Journal of Hydrogen Energy, 2024, 96: 97–112.
[35] Xing L., Das P.K., Song X.G., et al., Numerical analysis of the optimum membrane/ionomer water content of PEMFCs: The interaction of Nafion® ionomer content and cathode relative humidity. Applied Energy, 2015, 138: 242–257.
[36] Sakthivel M., Drillet J.F., An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 231: 62–72.