[1] Mekonnen M.M., Hoekstra A.Y., Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323.
[2] Yang G.M., Yang D.Z., Perez M.J., et al., Hydrogen production using curtailed electricity of firm photovoltaic plants: conception, modeling, and optimization. Energy Conversion and Management, 2024, 308: 118356.
[3] Wada Y., Floerke M., Hanasaki N., et al., Modeling global water use for the 21st century: the water futures and solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9(1): 175–222.
[4] Musie W., Gonfa G., Fresh water resource, scarcity, water salinity challenges and possible remedies: A review. Heliyon, 2023, 9(8): e18685.
[5] Wang F., Wang C.B., Shi G.L., et al., Isolating solar harvesting and water evaporation of salt-free Janus steam generator for concentration-independent seawater desalination. Desalination, 2023, 545: 116157.
[6] Pan Y.M., Li E., Wang Y.J., et al., Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation. Environmental Science & Technology, 2022, 56(16): 11818–11826.
[7] Sharshir S.W., Algazzar A.M., Elmaadawy K.A., et al., New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: A review. Desalination, 2020, 491: 114564.
[8] Xie W.C., Tang P., Wu Q.D., et al., Solar-driven desalination and resource recovery of shale gas wastewater by on-site interfacial evaporation. Chemical Engineering Journal, 2022, 428: 132624.
[9] Li Y., Liu X.Y., Hong W.P., et al., Formation, evolution, and enhancement mechanisms of mixed temperature gradient during interfacial solar vapor generation. International Journal of Heat and Mass Transfer, 2023, 208: 124082.
[10] Chang Z.H., Yang J., Chu Y.Q., et al., Energy, exergy and economic analysis of a novel immersion tapered solar still for combination with solar concentrator. Desalination, 2025, 601: 118560.
[11] Liu G.H., Chen T., Xu J.L., et al., Salt-rejecting solar interfacial evaporation. Cell Reports Physical Science, 2021, 2(1): 100310.
[12] Liu G.H., Xu J.L., Wang K.Y., Solar water evaporation by black photothermal sheets. Nano Energy, 2017, 41: 269–284.
[13] Arunkumar T., Lim H.W., Denkenberger D., et al., A review on carbonized natural green flora for solar desalination. Renewable & Sustainable Energy Reviews, 2022, 158: 112121.
[14] Hu X.Z., Xu W.C., Zhou L., et al., Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials, 2017, 29(5): 1604031.
[15] Seh Z.W., Liu S.H., Low M., et al., Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314.
[16] Ai S., Ma M., Chen Y.Z., et al., Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chemical Engineering Journal, 2022, 429: 132014.
[17] Li X.J., Yao Z.P., Wang J.K., et al., A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation. ACS Applied Energy Materials, 2019, 2(7): 5154–5161.
[18] Zhang Y.X., Xiong T., Nandakumar D.K., et al., Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Advanced Science, 2020, 7(9): 1903478.
[19] Liu G.H., Xu J.L., Chen T., et al., Progress in thermoplasmonics for solar energy applications. Physics Reports-Review Section of Physics Letters, 2022, 981: 1–50.
[20] Zheng X.Z., Zhang L.W., Photonic nanostructures for solar energy conversion. Energy & Environmental Science, 2016, 9(8): 2511–2532.
[21] Wang F., Mu P., Zhang Z., et al., Reduced graphene oxide coated hollow polyester fibers for efficient solar steam generation. Energy Technology, 2019, 7(7): 1900265.
[22] Li Y.J., Gao T.T., Yang Z., et al., 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Advanced Materials, 2017, 29(26): 1700981.
[23] Zhao F., Zhou X.Y., Shi Y., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13(6): 489–495.
[24] Yang L., Chen G.L., Zhang N., et al., Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification. ACS Sustainable Chemistry & Engineering, 2019, 7(23): 19311–19320.
[25] Yan W.T., Yang X., Liu T.Q., et al., Numerical simulation of heat transfer performance for ultra-thin flat heat pipe. Journal of Thermal Science, 2023, 32(2): 643–649.
[26] Lian X.X., Zhong D.W., Modeling and simulation of lithium vacuum evaporation process using COMSOL multiphysics. Journal of Thermal Science, 2024, 33(1): 86–100.
[27] Wu L., Dong Z.C., Cai Z.R., et al., Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 2020, 11(1): 521.
[28] Shan H., Ye Z.Y., Yu J., et al., Improving solar water harvesting via airflow restructuring using 3D vapor generator. Device, 2023, 1(4): 100065.
[29] Li J.Y., Zhou X., Zhang J.Y., et al., Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation. ACS Applied Energy Materials, 2020, 3(3): 3024–3032.
[30] Chae H.G., Kumar S., Materials science-making strong fibers. Science, 2008, 319(5865): 908–909.
[31] Wang W., Tian Z.Y., He N.R., et al., Biomass derived evaporator with highly interconnected structure for eliminating salt accumulation in high-salinity brine. Desalination, 2024, 574: 117232.
[32] Hou Y.C., Qiu J., Wang W., et al., Development of topology-optimized structural cavities macro- encapsulating chloride salt by gel-casting for high-temperature thermal energy storage. Journal of Energy Storage, 2024, 78: 110056.
[33] Chao W.X., Sun X.H., Li Y.D., et al., Enhanced directional seawater desalination using a structure-guided wood aerogel. ACS Applied Materials & Interfaces, 2020, 12(19): 22387–22397.
[34] Kong Y., Gao Y., Gao B.Y., et al., Tubular polypyrrole enhanced elastomeric biomass foam as a portable interfacial evaporator for efficient self-desalination. Chemical Engineering Journal, 2022, 445: 136701.
[35] Jin L., Zhang L., Liang H., et al., Large-scale carbon fiber-based solar-driven evaporator with 1T MoS2-MXene heterostructure: towards reliable mechanical performance and efficient seawater desalination. Chemical Engineering Journal, 2024, 497: 154469.
[36] Choi J., Lee H., Sohn B., et al., Highly efficient evaporative cooling by all-day water evaporation using hierarchically porous biomass. Scientific Reports, 2021, 11(1): 16811.
[37] Jonhson W., Xu X., Zhang D.W., et al., Fabrication of 3D-printed ceramic structures for portable solar desalination devices. ACS Applied Materials & Interfaces, 2021, 13(19): 23220–23229.
[38] Liu C., Hong K.V., Sun X., et al., An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination. Journal of Materials Chemistry A, 2020, 8(25): 12323–12333.