[1] Gong X.M., Zhang Z.B., Gan S.X., et al., A review on evaluation metrics of thermal performance in data centers. Building and Environment, 2020, 177: 106907.
[2] Uddin M., Darabidarabkhani Y., Shah A., et al., Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: A review. Renewable and Sustainable Energy Reviews, 2015, 51: 1553–1563.
[3] Two phase liquid immersion cooling. https://www.gigabyte.com/Solutions/Cooling /immersion-cooling, 2021 (accessed on 31 July 2021).
[4] Asgari S., MirhoseiniNejad S., Moazamigoodarzi H., et al., A gray-box model for real-time transient temperature predictions in data centers. Applied Thermal Engineering, 2021, 185: 116319.
[5] Zhang H.N., Shao S.Q., Xu H.B., et al., Free cooling of data centers: A review. Renewable & Sustainable Energy Reviews, 2014, 35: 171–182.
[6] Nadjahi C., Louahlia H., Lemasson S., et al., A review of thermal management and innovative cooling strategies for data center. Sustainable Computing-Informatics & Systems, 2018, 19: 14–28.
[7] Gupta R., Asgari S., Moazamigoodarzi H., et al., Cooling architecture selection for air-cooled data centers by minimizing exergy destruction. Energy, 2020, 201: 117625.
[8] Li F.N., Cao H.S., Current status and prospects of two-phase cooling for data centers. Journal of Refrigeration, 2022, 43(3): 28–36.
[9] Sarkar S., Gupta R., Roy T., et al., Review of jet impingement cooling of electronic devices: Emerging role of surface engineering. International Journal of Heat and Mass Transfer, 2023, 206: 123888.
[10] Zimmermann S., Meijer I., Tiwari M.K., et al., Aquasar: A hot water cooled data center with direct energy reuse. Energy, 2012, 43(1): 237–245.
[11] Haywood A.M., Sherbeck J., Phelan P., et al., The relationship among CPU utilization, temperature, and thermal power for waste heat utilization. Energy Conversion and Management, 2015, 95: 297–303.
[12] Maidanik Y.F., Vershinin S.V., Chernysheva M.A., Development and tests of miniature loop heat pipe with a flat evaporator. SAE Transactions, 2000, 109: 652–656.
[13] Maidanik Y.F., Vershinin S.V., Pastukhov V.G., et al., Loop heat pipes for cooling systems of servers. IEEE Transactions on Components and Packaging Technologies, 2010, 33(2): 416–423.
[14] Ambirajan A., Adoni A.A., Vaidya J.S., et al., Loop heat pipes: A review of fundamentals, operation, and design. Heat Transfer Engineering, 2012, 33: 387–405.
[15] Pawar S., Patel D.K., The impingement heat transfer data of inclined jet in cooling applications: A review. Journal of Thermal Science, 2020, 29: 1–12.
[16] Xu X.J., Wang Y., Bang Y.L., et al., Recent advances in closed loop spray cooling and its application in airborne systems. Journal of Thermal Science, 2021, 30: 32–50.
[17] Singh R., Akbarzadeh A., Mochizuki M., Effect of wick characteristics on the thermal performance of the miniature loop heat pipe. Journal of Heat Transfer, 2009, 131(8): 082601.
[18] Chernysheva M.A., Vershinin S.V., Maydanik Y.F., Development and investigation of a loop heat pipe at a high concentration of heat load. International Journal of Heat and Mass Transfer, 2022, 197: 123316.
[19] Zhou G.H., Li J., Lv L.C., An ultra-thin miniature loop heat pipe cooler for mobile electronics. Applied Thermal Engineering, 2016, 109: 514–523.
[20] Zhang X.F., Wang S.F., Experimental investigation of heat transfer performance of a miniature loop heat pipe with flat evaporator. International Conference on Green Building, Materials and Civil Engineering, Shangri-La, China, 2011, 71–78: 3806–3809. DOI: https://doi.org/10.4028/www.scientific.net/AMM.71-78.3806.
[21] Bernagozzi M., Georgoulas A., Miché N., et al., Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts. Applied Thermal Engineering, 2021, 194: 117061.
[22] Madhuri M., Yadav N.P., Parametric investigation of closed loop pulsating heat pipe with cerium oxide nanofluid. Journal of Applied Fluid Mechanics, 2022, 15(6): 1717–1727.
[23] Maydanik Y., Chernysheva M., Vershinin S., High-capacity loop heat pipe with flat evaporator for efficient cooling systems. Journal of Thermophysics and Heat Transfer, 2020, 34(3): 465–475.
[24] Wang J., Li Y.Z., Wang J., Transient performance and intelligent combination control of a novel spray cooling loop system. Chinese Journal of Aeronautics, 2013, 26(5): 1173–1181.
[25] Wang Y.W., Cen J.W., Jiang F.M., et al., An experimental study on the performance of a stainless steel-water loop heat pipe under natural cooling condition. Journal of Thermal Science, 2014, 23: 91–95.
[26] Mo B., Ohadi M.M., Dessiatoun S.V., et al., Capillary pumped-loop thermal performance improvement with electrohydrodynamic technique. Journal of Thermophysics and Heat Transfer, 2000, 14(1): 103–108.
[27] Lu D.P., Xie R.J., Wen J.J., Experimental study on a multi-evaporator loop heat pipe with a dual-layer structure condenser. Journal of Thermal Science, 2023, 32: 1466–1476.
[28] Lee M., Park C., Mechanical-capillary-driven two-phase loop: Numerical modeling and experimental validation. International Journal of Heat and Mass Transfer, 2018, 125: 972–982.
[29] Jiang C., Liu W., Liu Z.C., et al., Startup characteristics of pump-assisted capillary phase change loop. Applied Thermal Engineering, 2017, 126: 1115–1125.
[30] Jiang C., Liu Z.C., Wang D.D., et al., Effect of liquid charging process on the operational characteristics of pump-assisted capillary phase change loop. Applied Thermal Engineering, 2015, 91: 953–962.
[31] Zhang H., Jiang C., Zhang Z.K., et al., A study on thermal performance of a pump-assisted loop heat pipe with ammonia as working fluid. Applied Thermal Engineering, 2020, 175: 115342.
[32] Yang X.P., Liu J., Wang G.X., et al., Experimental study of mechanical-capillary driven phase-change loop for heat dissipation of electronic devices and batteries. Applied Thermal Engineering, 2022, 210: 118350.
[33] Setyawan I., Putra N., Hakim II., Experimental investigation of the operating characteristics of a hybrid loop heat pipe using pump assistance. Applied Thermal Engineering, 2018, 130: 10–16.
[34] Chi S.W., Heat pipe theory and practice: A sourcebook, first ed., McGraw-hill, New York, 1976.
[35] Peterson G.P., An introduction to heat pipes: modeling, testing, and applications, first ed., John Wiley & Sons, Hoboken, 1994.
[36] Li J., Peterson G.P., Geometric optimization of a micro heat sink with liquid flow. IEEE Transactions on Components and Packaging Technologies, 2006, 29: 145–154.
[37] Gao L.J., Xu H.J., Zhang X., et al., Numerical investigation on thermal performance of thermoelectric- cooler integrated cold plate of thermal control liquid loop in spacecraft. International Communications in Heat and Mass Transfer, 2023, 142: 106620.
[38] Huang Z.F., Li T.X., Experimental investigation of gravity effect on a vapor compression heat pump system. Energies, 2023, 16(11): 4412.