[1] Lei F., Ju Y., Zhang C., A rapid and automatic optimal design method for six-stage axial flow industry compressor. Journal of Thermal Science, 2021, 30: 1658–1673.
[2] Koff B.L., Gas turbine technology evolution: a designer’s perspective. Journal of Propulsion & Power, 2004, 20(4): 577–595.
[3] Zhao H., Du J., Zhang W., et al., A review on theoretical and numerical research of axial compressor surge. Journal of Thermal Science, 2023, 32: 254–263.
[4] Gbadebo S.A., Cumpsty N.A., Hynes T.P., Three-dimensional separations in axial compressors. Journal of Turbomachinery, 2005, 127(2): 331–339.
[5] Cao Z., Gao X., Zhang X., et al., Influence of endwall air injection with discrete holes on corner separation of a compressor cascade. Journal of Thermal Science, 2021, 30: 1684–1704.
[6] Lei V.M., Spakovszky Z.S., Greitzer E.M., A criterion for axial compressor hub-corner stall. Journal of Turbomachinery, 2008, 130(3): 475–486.
[7] Fu H., Zhou L., Ji L., Influence of sub boundary layer vortex generator height and attack angle on cross-flows in the hub region of compressors. Chinese Journal of Aeronautics, 2022, 35(8): 30–44.
[8] Flaszynski P., Doerffer P., Piotrowicz M., Effect of jet vortex generators on shock wave induced separation on gas turbine profile. Journal of Thermal Science, 2021, 30: 1435–1443.
[9] Harvy N.W., Some effects of non-axisymmetric endwall profiling on axial flow compressor aerodynamics: part I-linear cascade investigation. ASME, Berlin, Germany, 2008, GT 2008-50990, DOI: 10.1115/GT2008-50990.
[10] Ma S., Chu W., Zhang H., et al., A combined application of micro-vortex generator and boundary layer suction in a high-load compressor cascade. Chinese Journal of Aeronautics, 2019, 32(5): 1171–1183.
[11] Li J., Ji L., Zhou L., Design optimization of a blended blade and endwall in a compressor cascade. Journal of Engineering for Gas Turbines and Power, 2019, 142(2): 021003.
[12] Smith L.H., Yeh H., Sweep and dihedral effect in axial flow turbomachinery. Journal of Basic Engineering, 1963, 85(3): 401–414.
[13] Ji L., Shao W., Yi W., et al., A model for describing the influences of SUC-EW dihedral angle on corner separation. ASME, Montreal, Canada, 2007, GT2007-27618, DOI: 10.1115/GT2007-27618.
[14] Li J.-B., Li X., Ji L., et al., Use of blended blade and end wall method in compressor cascades: definition and mechanism comparisons. Aerospace Science Technology, 2019, 92: 738–749.
[15] Meng T., Yang G., Zhou L., et al., Full blended blade and endwall design of a compressor cascade. Chinese Journal of Aeronautics, 2021, 34(11): 79–93.
[16] Meng T., Li X., Zhou L., et al., Experimental and numerical research on blend blade and endwall technique in a compressor cascade. Physics of Fluid, 2024, 36(4): 046112.
[17] Meng T., Li X., Zhou L., et al., Large eddy simulation and compositive design of corner separation in a compressor cascade. Physics of Fluids, 2022, 34: 075113.
[18] Roberto P., Tiziano G., Shahrokh S., Secondary flow control of turbomachinery blades using vortex generators. ASME, Boston, USA, 2023, GT2023-103769, DOI: 10.1115/GT2023-103769.
[19] Brian P.C., The aerodynamic effect of fillet radius in a low speed compressor cascade. NASA Technical Memorandum, 1991, Article No: 105347.
[20] Zess G.A., Thole K.A., Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane. Journal of Turbomachinery, 2002, 124(2): 167–175.
[21] Mahmood G.I., Acharya S., Measured endwall flow and passage heat transfer in a linear blade passage with endwall and leading edge modifications. ASME, Montreal, Canada, 2007, Article ID: GT2007-28179,
DOI: 10.1115/GT2007-28179.
[22] Debruge L.L., The aerodynamic significance of fillet geometry in turbo-compressor blade rows. Journal of Engineering for Power, 1980, 102(4): 984–993.
[23] Meyer R., Schulz S., Liesner K., et al., A parameter study on the influence of fillets on the compressor cascade performance. Journal of Theoretical and Applied Mechanics, 2012, 50(1): 131–145.
[24] Goodhand M.N., Miller R.J., The impact of real geometries on three-dimensional separations in compressors. ASME, Glasgow, UK, 2010, GT2010-22246, DOI: 10.1115/GT2010-22246.
[25] Strazisar A.J., Powell J.A., Laser anemometer measurements in a transonic axial flow compressor rotor. Journal of Engineering for Power, 1981, 103(2): 430–437.
[26] Li X., Meng T., Li W., et al., Integrated passage design based on extended free-form deformation and adjoint optimization. Chinese Journal of Aeronautics, 2023, 36(4): 148–164.
[27] Strazisar A.J., Wood J.R., Laser anemometer measurements in a transonic axial-flow fan rotor. NASA Technical Paper, 1989, Article No: 2879.
[28] Richard A.A., Fan C.W., Multi-objective design optimization of a transonic axial fan stage using sparse active subspaces. Engineering Applications of Computational Fluid Mechanics, 2024, 18(1): 2325488.
[29] Nielsen E.J., Anderson W.K., Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA Journal, 2001, 40(6): 1155–1163.
[30] Vanderplaats G.N., Multidiscipline design optimization. ASME Applied Mechanics Reviews, 1988, 41(6): 257–262.