[1] Poullikkas A., An overview of current and future sustainable gas turbine technologies. Renewable and Sustainable Energy Reviews, 2005, 9(5): 409–443.
[2] Du W., Luo L., Jiao Y., et al., Heat transfer in the trailing region of gas turbines–A state-of-the-art review. Applied Thermal Engineering, 2021, 199: 117614.
[3] Barsi D., Perrone A., Qu Y., et al., Compressor and turbine multidisciplinary design for highly efficient micro-gas turbine. Journal of Thermal Science, 2018, 27: 259–269.
[4] Du K., Li Z., Li J., et al., Influences of a multi-cavity tip on the blade tip and the over tip casing aerothermal performance in a high pressure turbine cascade. Applied Thermal Engineering, 2019, 147: 347–360.
[5] Mansouri Z., Settar A., Khamane H., Computational investigation of heat load and secondary flows near tip region in a transonic turbine rotor with moving shroud. Applied Thermal Engineering, 2018, 136: 141–151.
[6] Chung J., Baek S., Hwang W., Experimental investigation of aerodynamic performance due to blade tip clearance in a gas turbine rotor cascade. Journal of Thermal Science, 2022, 31: 173–178.
[7] Wheeler A.P.S., Sandberg R.D., Sandham N.D., et al., Direct numerical simulations of a high-pressure turbine vane. Journal of Turbomachinery, 2016, 138(7): 071003.
[8] Srinivasan V., Goldstein R.J., Effect of endwall motion on blade tip heat transfer. Journal of Turbomachinery, 2003, 125(2): 267–273.
[9] Berrino M., Satta F., Simoni D., et al., Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades. Journal of Thermal Science, 2014, 23: 1–12.
[10] Shi Q., He W., Yao Z., et al., Thermal-economic comparative analysis and optimization of the Maisotsenko gas turbine cycle under different configurations. Journal of Thermal Science, 2024, 33(6): 2151–2165.
[11] Li L., Zhang J., Chen C., et al., Aerodynamic optimization and flow mechanism for a compressor cascade at low Reynolds number. Journal of Thermal Science, 2024, 20: 1–18.
[12] Jia H., Peng X., Lang C., Remora optimization algorithm. Expert Systems with Applications, 2021, 185: 115665.
[13] Hashim F.A., Hussain K., Houssein E.H., et al., Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence, 2021, 51: 1531–1551.
[14] Dehghani M., Montazeri Z., Trojovská E., et al., Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowledge-Based Systems, 2023, 259: 110011.
[15] Wang Y., Liu T., Zhang D., et al., Dual-convolutional neural network based aerodynamic prediction and multi-objective optimization of a compact turbine rotor. Aerospace Science and Technology, 2021, 116: 106869.
[16] Rubino A., Vitale S., Colonna P., et al., Fully-turbulent adjoint method for the unsteady shape optimization of multi-row turbomachinery. Aerospace Science and Technology, 2020, 106: 106132.
[17] Vincekovic L., John A., Qin N., et al., Exploring topology optimization for high pressure turbine blade tips. Journal of Turbomachinery, 2022, 144(7): 071013.
[18] Chen L., Chen J., Aerodynamic optimization design for high pressure turbines based on the adjoint approach. Chinese Journal of Aeronautics, 2015, 28(3): 757–769.
[19] Hao X., Sun L., Chi J., et al., Off-design performance of 9F gas turbine based on gPROMs and BP neural network model. Journal of Thermal Science, 2022, 31: 261–272.
[20] Abdullah M.S., Ishak M.H.H., Ismail F., Performance improvement of the Savonius turbine using a novel augmentation device with the Taguchi optimization method. Physics of Fluids, 2023, 35(1): 015108.
[21] Kwak J.S., Han J.C., Heat-transfer coefficients of a turbine blade-tip and near-tip regions. Journal of Thermophysics & Heat Transfer, 2003, 17(3): 297–303.
[22] Wang Z., Zhang W., Liu Z., et al., Numerical study on aero-thermal performance of HP turbine endwalls under influence of hot streak and high mainstream turbulence. ASME Turbo Expo: Power for Land, Sea, and Air, Seoul, Korea, 2016, Paper No: GT2016-57591.
DOI: 10.1115/GT2016-57591
[23] ANSYS, ANSYS CFX-Solver Theory Guide: Version 11.0, ANSYS, Canonsburg, PA, 2007.
[24] Mansour N.N., Kim J., Moin P., Near-wall k-epsilon turbulence modeling. AIAA Journal, 1989, 27(8): 1068–1073.
[25] Miller IV P.L., Blade geometry description using B-splines and general surfaces of revolution. Iowa State University, Ames, America, 2000.
[26] Timko L.P., Energy efficient engine high pressure turbine component test performance report. Report No: NASA-CR-168289, 1984.
[27] Saaty T.L., Decision making — the analytic hierarchy and network processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 2004, 13(1): 1–35.
[28] Meng D., et al., A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower. Renewable Energy, 2023, 203: 407–420.
[29] Holland J.H., Genetic algorithms. Scientific American, 1992, 267(1): 66–73.
[30] Helton J.C., Davis F.J., Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81(1): 23–69.
[31] Christopher F.H., Patil S.R., Identification and review of sensitivity analysis methods. Risk Analysis, 2002, 22(3): 553–578.
[32] Shi W.D., et al., Numerical simulation of tip clearance leakage vortex flow characteristic in axial flow pump. IOP Conference Series: Earth and Environmental Science, Chicago, America, 2012, 15(7): 072023.
DOI: 10.1088/1755-1315/15/7/072023.