[1]
İlbaş M., Yılmaz İ., Experimental analysis of the effects of hydrogen addition on methane combustion. International Journal of Energy Research, 2012, 36(5): 643–647.
[2]
Wicksall D.M., Agrawal A.K., Schefer R.W., et al., Influence of hydrogen addition on flow structure in confined swirling methane flame. Journal of Propulsion and Power, 2005, 21(1): 16–24.
[3]
Sandeep K.C., Bhattacharyya R., Warghat C., et al., Experimental investigation on the kinetics of catalytic recombination of hydrogen with oxygen in air. International Journal of Hydrogen Energy, 2014, 39(31): 17906–17912.
[4]
Takagi Y., Oikawa M., Sato R., et al., Near-zero emissions with high thermal efficiency realized by optimizing jet plume location relative to combustion chamber wall, jet geometry and injection timing in a direct-injection hydrogen engine. International Journal of Hydrogen Energy, 2019, 44(18): 9456–9465.
[5]
Haque M.A., Nemitallah M.A., Abdelhafez A., et al., Review of fuel/oxidizer-flexible combustion in gas turbines. Energy & Fuels, 2020, 34(9): 10459–10485.
[6]
Nose M., Kawakami T., Araki H., et al., Hydrogen-fired gas turbine targeting realization of CO2-free society. Mitsubishi Heavy Industries Technical Review, 2018, 55(4): 1–7.
[7]
Liu X., Shao W., Liu C., et al., Numerical study of a high-hydrogen micromix model burner using flamelet-generated manifold. International Journal of Hydrogen Energy, 2021, 46(39): 20750–20764.
[8]
Suttrop F., Dorneiski, R., Low NOx-potential of hydrogen-fuelled gas turbine engines. 1st International Conference on Combustion Technologies for Clean Environment, Vilamoura, Portugal, 1991: FH-AC-TB 06-84-91-05.
[9]
Dahl G., Suttrop F., Engine control and low-NOx combustion for hydrogen fuelled aircraft gas turbines. International Journal of Hydrogen Energy, 1998, 23(8): 695–704.
[10]
Horikawa A., Okada K., Wirsum M., et al., 100% hydrogen dry low NOx combustor developments for 2 MW class gas turbine. The Proceedings of the International Conference on Power Engineering, Virtual, Online, 2021, 15: 0222.
DOI: https://doi.org/10.1299/jsmeicope.2021.15.2021-0222.
[11]
Horikawa A., Okada K., Yamaguchi M., et al., Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Virtual, Online, 2021, 3B: V03BT04A014. DOI: https://doi.org/10.1115/GT2021-59666.
[12]
Cecere D., Giacomazzi E., Di Nardo A., et al., Gas turbine combustion technologies for hydrogen blends. Energies, 2023, 16(19): 6829.
[13]
Karakurt A., Khandelwal B., Sethi V., et al., Study of novel micromix combustors to be used in gas turbines; using hydrogen, hydrogen-methane, methane and kerosene as a fuel. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 2012: 4265. DOI: https://doi.org/10.2514/6.2012-4265.
[14]
Dodo S., Asai T., Koizumi H., et al., Combustion characteristics of a multiple-injection combustor for dry low-NOx combustion of hydrogen-rich fuels under medium pressure. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Vancouver, British Columbia, Canada, 2011, 2: 467–476.
DOI: https://doi.org/10.1115/GT2011-45459.
[15]
Huang Y., Yang V., Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor. Proceedings of the Combustion Institute, 2005, 30(2): 1775–1782.
[16]
Zhou H., Hu L., Mitigation of combustion instability and NOx emissions by microjets in lean premixed flames with different swirl numbers. Journal of Thermal Science, 2023, 32(4): 1697–1709.
[17]
Yılmaz İ., Effect of swirl number on combustion characteristics in a natural gas diffusion flame. Journal of Energy Resources Technology, 2013, 135(4): 042204.
[18]
İlbaş M., Karyeyen S., Yilmaz İ., Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International Journal of Hydrogen Energy, 2016, 41(17): 7185–7191.
[19]
Nicol D., Malte P.C., Lai J., et al., NOx sensitivities for gas turbine engines operated on lean-premixed combustion and conventional diffusion flames. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Cologne, Germany, 1992, 3: V003T06A012. DOI: https://doi.org/10.1115/92-GT-115.
[20]
Funke H.H.W., Beckmann N., Keinz J., et al., 30 years of dry-low-NOx micromix combustor research for hydrogen-rich fuels—An overview of past and present activities. Journal of Engineering for Gas Turbines and Power, 2021, 143(7): 071002.
[21]
Funke H.H.W., Keinz J., Kusterer K., et al., Development and testing of a low NOx micromix combustion chamber for industrial gas turbines. International Journal of Gas Turbine, Propulsion and Power Systems, 2017, 9(1): 27–36.
[22]
Funke H.H.W., Börner S., Krebs W., et al., Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Vancouver, British Columbia, Canada, 2011, 2: 343–353. DOI: https://doi.org/10.1115/GT2011-45305.
[23]
Landry-Blais A., Sivić S., Picard M., Micro-mixing combustion for highly recuperated gas turbines: effects of inlet temperature and fuel composition on combustion stability and NOx emissions. Journal of Engineering for Gas Turbines and Power, 2022, 144(9): 091014.
[24]
Kroniger D., Horikawa A., Funke H.H.W., et al., Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Virtual, Online, 2021, 3A: V03AT04A025.
DOI: https://doi.org/10.1115/GT2021-58926.
[25]
Sun X., Agarwal P., Carbonara F., et al., Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Virtual, Online, 2020, 3: V003T03A015.
DOI: https://doi.org/10.1115/GT2020-16084.
[26]
Giannouloudis A., Sun X., Corsar M., et al., On the development of an experimental rig for hydrogen micromix combustion testing. 10th European Combustion Meeting, Naples, Italy, 2021: 18653.
DOI: https://dspace.lib.cranfield.ac.uk/handle/1826/18653.
[27]
López-Juárez M., Sun X., Sethi B., et al., Characterising hydrogen micromix flames: combustion model calibration and evaluation. Proceeding of the ASME Turbo Expo: Power for Land, Sea, and Air, Virtual, Online, 2020, 3: V003T03A008.
DOI: https://doi.org/10.1115/GT2020-14893.
[28]
Hardalupas Y.L., Orain M., Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combustion and Flame, 2004, 139(3): 188–207.
[29]
Driscoll J.F., Chen R.H., Yoon Y., Nitric oxide levels of turbulent jet diffusion flames: effects of residence time and Damköhler number. Combustion and Flame, 1992, 88(1): 37–49.
[30]
Isaac B.J., Parente A., Galletti C., et al., A novel methodology for chemical time scale evaluation with detailed chemical reaction kinetics. Energy & Fuels, 2013, 27(4): 2255–2265.