[1] Jiang C.L., Yin Z., Zhang H.L., et al., Current status and prospects of high-speed direct-drive turbine power
generation technology. Journal of Thermal Science, 2024, 33: 2097–2116.
[2] Chen H., Li Y., Jiang X.X., et al., Experimental study on gasoline-ammonia combustion characteristics with pre-chamber jet ignition. Journal of the Energy Institute, 2023, 111: 101429.
[3] Chen S., Yu Z., Wang Y., et al., Experimental investigation of the flame propagation speeds of ammonia/air and ammonia/hydrogen/air mixtures at elevated temperatures. Journal of Thermal Science, 2025.
DOI: https://doi.org/10.1007/s11630-025-2110-9.
[4] Wang S.Y., Cui M.S., Liu P.Z., et al., Flame morphology and characteristic of co-firing ammonia with pulverized coal on a flat flame burner. Journal of Thermal Science, 2024, 33: 1935–1945.
[5] Um D.H., Joo J.M., Lee S., et al., Combustion stability limits and NOx emissions of nonpremixed ammonia-substituted hydrogen-air flames. International Journal of Hydrogen Energy, 2013, 38(34): 14854– 14865.
[6] Choi S., Lee S., Kwon O.C., Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy, 2015, 85: 503–510.
[7] Lee S., Kwon O.C., Effects of ammonia substitution on extinction limits and structure of counterflow nonpremixed hydrogen/air flames. International Journal of Hydrogen Energy, 2011, 36(16): 10117–10128.
[8] Hashimoto G., Hadi K., Xia Y., et al., Turbulent flame propagation limits of ammonia/methane/air premixed mixture in a constant volume vessel. Proceedings of the Combustion Institute, 2021, 38(4): 5171–5180.
[9] Tang G., Jin P.F., Bao Y.L., et al., Experimental investigation of premixed combustion limits of hydrogen and methane additives in ammonia. International Journal of Hydrogen Energy, 2021, 46(39): 20765–20776.
[10] Khateeb A.A., Guiberti T.F., Wang G.Q., et al., Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressures. International Journal of Hydrogen Energy, 2021, 46(21): 11969–11981.
[11] Yoo S.W., Christiansen E.W., Law C.K., Oscillatory extinction of spherical diffusion flames: micro-buoyancy experiment and computation. Proceedings of the Combustion Institute, 2002, 29(1): 29–36.
[12] Sohn C.H., Han H.S., Reuter C.B., et al., Thermo-kinetic dynamics of near-limit cool diffusion flames. Proceedings of the Combustion Institute, 2017, 36(1): 1329–1337.
[13] Park J.S., Dong J.H., Park J., et al., Edge flame instability in low-strain-rate counterflow diffusion flames. Combustion and Flame, 2006, 146(4): 612–619.
[14] Zhang Y., Kang Y.H., Lu X.F., et al., Numerical study on oscillatory propagation dynamics and physics near the limits of planar freely propagating premixed flames. Physics of Fluids, 2021, 33: 083602.
[15] Yang F., Kong W., Pulsating instability in H2-air partially premixed flames. Proceedings of the Combustion Institute, 2015, 35(1): 1057–1064.
[16] Xiang L.K., Dong W.L., Hu J.L., et al., Numerical study on CH4 laminar premixed flames for combustion characteristics in the oxidant atmospheres of N2/CO2/H2O/Ar-O2. Journal of the Energy Institute, 2020, 93(4): 1278–1287.
[17] Wu Z.T., Lv J.W., Liu X.Y., et al., Adiabatic laminar burning velocities and NO generation paths of NH3/H2 premixed flames. Journal of the Energy Institute, 2023, 108: 101225.
[18] Yang K.X., Xu L., Qi D.D., et al., Magnetic field effects on characteristics of counterflow diffusion ethylene flame: An experimental study. Journal of the Energy Institute, 2023, 108: 101231.
[19] Santa K.J., Chao B.H., Sunderland P.B., et al., Radiative extinction of gaseous spherical diffusion flames in microgravity. Combustion and Flame, 2007, 151(4): 665–675.
[20] Mills K., Matalon M., Burner-generated spherical diffusion flames. Combustion Science and Technology, 1997, 129(1–6): 295–319.
[21] Mills K., Matalon M., Extinction of spherical diffusion flames in the presence of radiant loss. Symposium (International) on Combustion, 1998, 27(2): 2535–2541.
[22] Cheatham S., Matalon M., Near-limit oscillations of spherical diffusion flames. AIAA Journal, 1996, 34(7): 1403-1409.
[23] Sung C.J., Zhu D.L., Law C.K., On micro-buoyancy spherical diffusion flames and a double luminous zone structure of the hydrogen/methane flame. Symposium (International) on Combustion, 1998, 27(2): 2559– 2566.
[24] Farouk T.I., Dietrich D., Dryer F.L., Three stage cool flame droplet burning behavior of n-alkane droplets at elevated pressure conditions: Hot, warm and cool flame. Proceedings of the Combustion Institute, 2019, 37(3): 3353–3361.
[25] Alam F.E., Aghdam A.C., Dryer F.L., et al., Oscillatory cool flame combustion behavior of submillimeter sized n-alkane droplet under near limit conditions. Proceedings of the Combustion Institute, 2019, 37(3): 3383–3391.
[26] Farouk T.I., Dietrich D., Alam F.E., et al., Isolated n-decane droplet combustion-Dual stage and single stage transition to “Cool Flame” droplet burning. Proceedings of the Combustion Institute, 2017, 36(2): 2523–2530.
[27] Zhang P.Y., Kang Y.H., Zhang Y., et al., Flammability dynamics and oscillation-induced extinction mechanism of dimethyl ether spherical diffusion flame in microgravity. Combustion Theory & Modelling, 2020, 24(6): 1130–1152.
[28] Chen J., Kang Y.H., Zou Y.P., et al., A numerical study on near-limit extinction dynamics of dimethyl ether spherical diffusion flame. Fuel Processing Technology, 2019, 185: 79–90.
[29] Kee R.J., Rupley F.M., Miller J.A., et al., Chemkin-II: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Report, SAND85- 8240.UC-706, Sandia Natinal Laboratories, New Mexico, 1992.
[30] Johansson R., Leckner B., Andersson K., et al., Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combustion and Flame, 2011, 158(5): 893−901.
[31] Nishioka M., Law C.K., Takeno T., A flame-controlling continuation method for generating S-curve responses with detailed chemistry. Combustion and Flame, 1996, 104(3): 328−342.
[32] Duynslaegher C., Jeanmart H., Vandooren J., Flame structure studies of premixed ammonia/hydrogen/oxygen/ argon flames: Experimental and numerical investigation. Proceedings of the Combustion Institute, 2009, 32(1): 1277–1284.
[33] Konnov A.A., Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame, 2009, 156(11): 2093–2105.
[34] Duynslaegher C., Contino F., Vandooren J., et al., Modeling of ammonia combustion at low pressure. Combustion and Flame, 2012, 159(9): 2799–2805.
[35] Irace P.H., Waddell K.A., Constales D., et al., Critical temperature and reactant mass flux for radiative extinction of ethylene microgravity spherical diffusion flames at 1 bar. Proceedings of the Combustion Institute, 2023, 39(2): 1905–1913.
[36] Chen J., Envelope X., Experimental and kinetic study on the extinction characteristics of ammonia-dimethyl ether diffusion flame. Fuel, 2023, 334: 126743.
[37] Xu S., Experimental and kinetic studies of extinction limits of counterflow cool and hot diffusion flames of ammonia/n-dodecane. Combustion and Flame, 2022, 245: 112316.
[38] Shan R.Q., Lu T.F., Ignition and extinction in perfectly stirred reactors with detailed chemistry. Combustion and Flame, 2012, 159(6): 2069–2076.
[39] Xu C., Park J.W., Yoo C.S., et al., Identification of premixed flame propagation modes using chemical explosive mode analysis. Proceedings of the Combustion Institute, 2019, 37(2): 2407–2415.
[40] Kang Y.H., Wang Q., Zhang P.Y., et al., Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames. Energy, 2020, 193: 116786.
[41] Law C.K., Combustion physics, first ed., Cambridge University Press, Cambridge, 2006.
[42] Li C., Detection of local extinction and re-ignition in non-premixed ethylene-air flames using chemical explosive mode analysis. University of Connecticut, CT, USA, 2015.
[43] Christiansen E.W., Tse S.D., Law C.K., A computational study of oscillatory extinction of spherical diffusion flames. Combustion and Flame, 2003, 134(4): 327–337.