[1]
Hansen J., Nazarenko L., Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(2): 423‒428.
[2]
Helble J.J., Devito M.S., Wu C.Y., et al., Combustion aerosols: factors governing their size and composition and implications to human health. Air Repair, 2000, 50(9): 1619‒1622.
[3]
Johnson K.S., Zuberi B., Molina M.J., et al., Processing of soot in an urban environment: case study from the Mexico city Metropolitan area. Atmospheric Chemistry and Physics (ACP), 2005, 5(11): 3033‒3043.
[4]
Yang G., Teague S., Pinkerton K., et al., Synthesis of an ultrafine iron and soot aerosol for the evaluation of particle toxicity. Aerosol Science and Technology, 2001, 35(3): 759‒766.
[5]
Zheng W.L., Wang Q.J., Xiao H.H., et al., Experimental study on geometry characteristics of turbulent premixed flames for natural gas/air mixtures. Journal of Thermal Science, 2025, 34(1): 268‒282.
[6]
Menon S., Hansen J., Nazarenko Y., et al., Climate effects of black carbon aerosols in China and India. American Association for the Advancement of Science, 2002, 297(5590): 2250‒2253.
[7]
Popovitcheva O.B., Persiantseva N.M., Trukhin M.E., et al., Experimental characterization of aircraft combustor soot: Microstructure, surface area, porosity and water adsorption. Physical Chemistry Chemical Physics, 2000, 19(19): 4421‒4426.
[8]
Chen B., Togbé C., Dagaut P., et al., Quantities of interest in jet stirred reactor oxidation of a high-octane gasoline. Energy Fuels, 2017, 31(5): 5543‒5553.
[9]
Russo C., Ciajolo A., D'Anna A., et al., Modelling analysis of PAH and soot measured in a premixed toluene-doped methane flame. Fuel, 2018, 234(15): 1026‒1032.
[10]
Yuan W.H., Li Y.Y., Dagaut P., et al., Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame, 2015, 162(1): 22‒40.
[11]
Yuan W.H., Li Y.Y., Dagaut P., et al., Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion & Flame, 2015, 162(1): 3‒21.
[12]
Frenklach M., Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4(11): 2028‒2037.
[13]
Frenklach M., Clary D.W., Gardiner W.C., et al., Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium on Combustion, 1985, 20(1): 887‒901.
[14]
Cabra R., Myhrvold T., Chen Y.J., et al., Simultaneous laser Raman-Rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proceedings of the Combustion Institute, 2002, 29(2): 1881‒1888.
[15]
Lin K.C., Sunderland P.B., Faeth G.M., et al., Soot nucleation and growth in acetylene air laminar coflowing jet diffusion flames. Combustion and Flame, 1996, 104(3): 369‒375.
[16]
Cabra R., Chen J.Y., Dibble R.W., et al., Lifted methane-air jet flames in a vitiated coflow. Combustion and Flame, 2005, 143(4): 491‒506.
[17]
Wang H., Frenklach M., A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion & Flame, 1997, 110 (1): 173‒221.
[18]
Frenklach M., Wang H., Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion, 1991, 23(1): 1559‒1566.
[19]
Liu H.F., Cui Y.Q., Chen B.L., et al., Effects of flame temperature on PAHs and soot evolution in partially premixed and diffusion flames of a diesel surrogate. Energy & Fuels, 2019, 33(11): 11821‒11829.
[20]
Drakon A., Eremin A., Mikheyeva E., et al., Soot formation in shock-wave-induced pyrolysis of acetylene and benzene with H2, O2, and CH4 addition. Combustion and Flame, 2018, 198: 158‒168.
[21]
Hirota M., Nakamura Y., Saito T., et al., Soot control of laminar jet-diffusion lifted flame excited by high-frequency acoustic oscillation. Journal of Thermal Science and Technology, 2017, 12(2): JTST0024.
[22]
Zheng S., Yang Y., Sui R., et al., Effects of C2H2 and C2H4 radiation on soot formation in ethylene/air diffusion flames. Applied Thermal Engineering, 2021, 183(1): 116194.
[23]
Bouvier M., Cabot G., Yon J., et al., On the use of PIV, LII, PAH‒PLIF and OH-PLIF for the study of soot formation and flame structure in a swirl stratified premixed ethylene/air flame. Proceedings of the Combustion Institute, 2021, 38(1): 1851‒1858.
[24]
Loboda E.L., Anufriev I.S., Agafontsev M.V., et al., Evaluating characteristics of turbulent flames by using IR thermography and PIV. Infrared Physics & Technology, 2018, 92: 240‒243.
[25]
Metcalfe W.K., Burke S.M., Ahmed S.S., et al., A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels. International Journal of Chemical Kinetics, 2013, 45(10): 638‒675.
[26]
Jia Y.F., Wu L., Zhang T., et al., Research and improvement of swirlmeter based on FLUENT simulation. Control and Instruments In Chemical Industry, 2005, 2014(1): 1‒18.
[27]
Kee R.J., Rupley F.M., Miller J.A., et al., CHEMKIN‒III: A FORTRAN chemical kinetics package for the analysis of gas‒phase chemical and plasma kinetics. Sandia Report sand, 1996, 96(3): 142‒146.
[28]
Tian Z.Y., Li Y.Y., Zhang L.D., et al., An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156(7): 1413‒1426.