Thermal Conductivity Modulation and Phonon Transport Mechanisms of MoS2-MoSe2 Heterostructure

  • ZHANG Xunda ,
  • JIANG Youtao ,
  • ZHANG Zhen’gao ,
  • HAO Lei ,
  • TIAN Hongxin ,
  • LI Shuyang ,
  • GUO Bowen ,
  • ZHOU Chenxi ,
  • DONG Chunhai
Expand
  • 1. State Grid Tianjin Electric Power Company Electric Power Scientific Research Institute, Tianjin 300000, China
    2. State Grid Tianjin Power Company, Tianjin 300000, China
    3. State Grid Tianjin Power Company Material Company, Tianjin 300000, China

Online published: 2025-07-04

Supported by

This work was supported by State Grid Tianjin Electric Power Company Technology Project (No. 2023-50).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

The regulation of interlayer van der Waals forces and the engineering of heterostructures represent effective strategies to reduce the thermal conductivity and improve the thermoelectric performance of materials. In this study, molecular dynamics simulations and the density functional theory were employed to study the thermal conductivity of bilayer MoSe2, bilayer MoS2, and MoS2-MoSe2 heterostructures. The analysis of thermal conductivity indicates that an increase in van der Waals forces results in a reduction of thermal conductivities in both bilayer MoSe2 and MoS2. Interestingly, for the MoS2-MoSe2 heterostructure, the thermal conductivity initially increases and then decreases with growing van der Waals forces. Among the structures studied, bilayer MoSe2 exhibits the highest thermal conductivity, followed by the MoS2-MoSe2 heterostructure, and then bilayer MoS2. The major factors affecting heat transfer, including heat capacity, phonon group velocity, and phonon lifetime, demonstrate a positive correlation with thermal conductivity. Additionally, it is observed that MoS2 has a more pronounced impact on the heterostructure compared to MoSe2.

Cite this article

ZHANG Xunda , JIANG Youtao , ZHANG Zhen’gao , HAO Lei , TIAN Hongxin , LI Shuyang , GUO Bowen , ZHOU Chenxi , DONG Chunhai . Thermal Conductivity Modulation and Phonon Transport Mechanisms of MoS2-MoSe2 Heterostructure[J]. Journal of Thermal Science, 2025 , 34(4) : 1408 -1416 . DOI: 10.1007/s11630-025-2116-3

References

[1] Feng F., Li T., An J., et al., Performance assessment of a novel polygeneration system based on the integration of waste plasma gasification, tire pyrolysis, gas turbine, supercritical CO2 cycle and organic Rankine cycle. Journal of Thermal Science, 2023, 32(6): 2196–2214.
[2] Lv J., Wang C., Chen H., et al., Thermodynamic and economic analysis of a conceptual system combining sludge gasification, SOFC, supercritical CO2 cycle, and organic Rankine cycle. Journal of Thermal Science, 2024, 33(4): 1491–1508.
[3] He J., Tritt T.M., Advances in thermoelectric materials research: looking back and moving forward. Science, 2017, 357(6358): eaak9997.
[4] Pichanusakorn P., Bandaru P., Nanostructured thermoelectrics. Materials Science and Engineering: R: Reports, 2010, 67(2–4): 19–63.
[5] Shi X., Zou J., Chen Z., Advanced thermoelectric design: from materials and structures to devices. Chemical Reviews, 2020, 120(15): 7399–7515.
[6] Tan G., Zhao L.D., Kanatzidis M.G., Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016, 116(19): 12123–12149.
[7] Tritt T.M., Subramanian M.A., Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bulletin, 2006, 31(3): 188–198.
[8] Yang J., Xi L., Qiu W., et al., On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. npj Computational Materials, 2016, 2: 15015.
[9] Balandin A.A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581.
[10] Saha S., Banik A., Biswas K., Few-layer nanosheets of n-type SnSe2. Chemistry-A European Journal, 2016, 22(44): 15634–15638.
[11] Zhao K., Duan H., Raghavendra N., et al., Solid‐state explosive reaction for nanoporous bulk thermoelectric materials. Advanced Materials, 2017, 29(42): 1701148.
[12] Dresselhaus M.S., Hicks L.D., Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993, 47(19): 12727–12731.
[13] Buscema M., Barkelid M., Zwiller V., et al., Large and tunable photothermoelectric effect in single-layer MoS2. Nano Letters, 2013, 13(2): 358–363.
[14] Yan R., Simpson J.R., Bertolazzi S., et al., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano, 2014, 8(1): 986–993.
[15] Niubo M., Formosa J., Maldonado-Alameda A., et al., Magnesium phosphate cement formulated with low grade magnesium oxide with controlled porosity and low thermal conductivity as a function of admixture. Ceramics International, 2016, 42(13): 15049–15056.
[16] Sumirat I., Ando Y., Shimamura S., Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. Journal of Porous Materials, 2006, 13(3): 439–443.
[17] Xiong F., Tan H.B., Xia C., et al., Strain and doping in two-dimensional SnTe nanosheets: implications for thermoelectric conversion. ACS Applied Nano Materials, 2020, 3(1): 114–119.
[18] Feng B., Li Z.X., Zhang X., Effect of grain-boundary scattering on the thermal conductivity of nanocrystalline metallic films. Journal of Physics D-Applied Physics, 2009, 42(5): 055311.
[19] Yang Y., Cao J., Wei N., et al., Thermal conductivity of defective graphene oxide: A molecular dynamic study. Molecules, 2019, 24(6): 1103.
[20] Chen Y., Sun M., Two-dimensional WS2/MoS2 heterostructures: properties and applications. Nanoscale, 2021, 13(11): 5594–5619.
[21] Zhang M., Tang G.H., Li Y.F., et al., Phonon thermal properties of heterobilayers with a molecular dynamics study. International Journal of Thermophysics, 2020, 41(5): 1–18.
[22] Han D., Wang X., Ding W., et al., Phonon thermal conduction in a grapheme-C3N heterobilayer using molecular dynamics simulations. Nanotechnology, 2019, 30(7): 075403.
[23] Ma H., Babaei H., Tian Z., The importance of van der Waals interactions to thermal transport in Graphene-C60 heterostructures. Carbon, 2019, 148: 196–203.
[24] Yang Y., Ma J., Yang J., et al., Molecular dynamics simulation on in-plane thermal conductivity of graphene/hexagonal boron nitride van der Waals heterostructures. ACS Applied Materials & Interfaces, 2022, 14(40): 45742–45751.
[25] Wu X., Han Q., Phonon thermal transport across multilayer graphene/hexagonal boron nitride van der Waals heterostructures. ACS Applied Materials & Interfaces, 2021, 13(27): 32564–32578.
[26] Qian X., Zhou J., Chen G., Phonon-engineered extreme thermal conductivity materials. Natural Material, 2021, 20(9): 1188–1202.
[27] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–9.
[28] Jiang J., Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: a molecular dynamics study. Acta Mechanica Solida Sinica, 2019, 32(1): 17–28.
[29] Ding W., Han D., Zhang J., et al., Mechanical responses of WSe2 monolayers: A molecular dynamics study. Materials Research Express, 2019, 6(8): 085071.
[30] Gong F., Ding Z., Fang Y., et al., Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: insights from multiscale modeling. ACS Applied Materials & Interfaces, 2018, 10(17): 14614–14621.
[31] Susarla S., Manimunda P., Morais Jaques Y., et al., Deformation mechanisms of vertically stacked WS2/MoS2 heterostructures: The role of interfaces. ACS Nano, 2018, 12(4): 4036–4044.
[32] Burke K., Ernzerhof M., Perdew J.P., Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868.
[33] Joubert D., Kresse G., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3): 1758–1775.
[34] Grimme S., Antony J., Ehrlich S., et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 2010, 132(15): 154104.
[35] Togo A., Tanaka I., First principles phonon calculations in materials science. Scripta Materialia, 2015, 108: 1–5.
[36] Chaput L., Tanaka I., Togo A., Distributions of phonon lifetimes in Brillouin zones. Physical Review B, 2015, 91(9): 094306.
[37] Hong Y., Ju M.G, Zhang J, et al. Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer. Physical Chemistry Chemical Physics, 2018, 20(4): 2637–2645.
[38] Nie X., Xue J., Zhao L., et al., Tunning lattice thermal conductivity of bilayer and trilayer molybdenum disulfide thermoelectric materials through twist angles. International Journal of Heat and Mass Transfer, 2022, 194: 123005.
[39] Salaway R.N., Zhigilei L.V., Molecular dynamics simulations of thermal conductivity of carbon nanotubes: resolving the effects of computational parameters. International Journal of Heat and Mass Transfer, 2014, 70: 954–964.
[40] Zhang M., Tang G.H., Li Y.F., et al., Phonon thermal properties of heterobilayers with a molecular dynamics study. International Journal of Thermophysics, 2020, 41(5): 1–18.
Outlines

/