[1]
Joseph D.D., Preziosi L., Heat waves. Reviews of Modern Physics, 1989, 61(1): 41.
[2]
Jou D., Casas-Vázquez J., Lebon G., Jou D., Casas-Vázquez J., Lebon G., Extended irreversible thermodynamics. Springer, 1996.
[3]
Ghazanfarian J., Shomali Z., Abbassi A., Macro-to nanoscale heat and mass transfer: the lagging behavior. International Journal of Thermophysics, 2015, 36: 1416–1467.
[4]
Kundu B., Lee K.S., Fourier and non-Fourier heat conduction analysis in the absorber plates of a flat-plate solar collector. Solar Energy, 2012, 86(10): 3030–3039.
[5]
Frankel J., Vick B., Özisik M., General formulation and analysis of hyperbolic heat conduction in composite media. International Journal of Heat and Mass Transfer, 1987, 30(7): 1293–1305.
[6]
Delouei A.A., Emamian A., Karimnejad S., Sajjadi H., A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. International Communications in Heat and Mass Transfer, 2019, 108: 104280.
[7]
Delouei A.A, Emamian A., Ghorbani S., He F., A general unsteady Fourier solution for orthotropic heat transfer in 2D functionally graded cylinders. Mathematical Methods in the Applied Sciences, 2024, 47(6): 3942–3959.
[8]
Delouei A.A, Emamian A., Karimnejad S., Sajjadi H., Jing D., Asymmetric conduction in an infinite functionally graded cylinder: Two-dimensional exact analytical solution under general boundary conditions. Journal of Heat Transfer, 2020, 142(4): 044505.
[9]
He F., Amiri Delouei A., Ellahi R., Alamri S.Z., Emamian A., Ghorbani S., Unsteady temperature distribution in a cylinder made of functionally graded materials under circumferentially-varying convective heat transfer boundary conditions. Zeitschrift für Naturforschung A, 2023. DOI: 10.1515/zna-2023-0039
[10]
Delouei A.A., Emamian A., Karimnejad S., Sajjadi H., Tarokh A., On 2D asymmetric heat conduction in functionally graded cylindrical segments: A general exact solution. International Journal of Heat and Mass Transfer, 2019, 143: 118515.
[11]
Amiri Delouei A., Emamian A., Karimnejad S., Sajjadi H., Jing D., Two-dimensional temperature distribution in FGM sectors with the power-law variation in radial and circumferential directions. Journal of Thermal Analysis and Calorimetry, 2021, 144: 611–621.
[12]
Emamian A., Amiri Delouei A., Karimnejad S., Jing D., Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling. Mathematical Methods in the Applied Sciences, 2023, 46(10): 11442–11461.
[13]
Delouei A.A., Emamian A., Karimnejad S., Sajjadi H., Jing D., Two-dimensional analytical solution for temperature distribution in FG hollow spheres: General thermal boundary conditions. International Communications in Heat and Mass Transfer, 2020, 113: 104531.
[14]
Delouei A.A., Emamian A., Ghorbani S., He F., Spherical partial differential equation with non-constant coefficients for modeling of nonlinear unsteady heat conduction in functionally graded materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 2024, 104(8): e202300725.
[15]
Amiri Delouei A., Emamian A., Karimnejad S., Li Y., An exact analytical solution for heat conduction in a functionally graded conical shell. Journal of Applied and Computational Mechanics, 2023, 9(2): 302–317.
[16]
Emamian A., Amiri Delouei A., Karimnejad S., Sajadi H., Analytical solution of heat transfer in a cone made of functionally graded material. Amirkabir Journal of Mechanical Engineering, 2021, 53(1): 539–552.
[17]
Mullis A.M., Rapid solidification within the framework of a hyperbolic conduction model. International journal of Heat and Mass Transfer, 1997, 40(17): 4085–4094.
[18]
Gembarovic J., Gembarovic J.r J., Non-Fourier heat conduction modeling in a finite medium. International Journal of Thermophysics, 2004, 25(4): 1261–1268.
[19]
Espinosa-Paredes G., Espinosa-Martinez E., Fuel rod model based on non-Fourier heat conduction equation. Annals of Nuclear Energy, 2009, 36(5): 680–693.
[20]
Zhang Y., Zheng C., Liu Y., Shao L., Gou C., Two exact solutions of the DPL non-Fourier heat conduction equation with special conditions. Acta Mechanica Sinica, 2009, 25(2): 205–210.
[21]
Hu J., Wang B., Hirakata H., Wang K., Thermal shock fracture analysis of auxetic honeycomb layer based on non-Fourier heat conduction. Engineering Structures, 2023, 279: 115581.
[22]
Tzou D.Y., Macro-to microscale heat transfer: the lagging behavior. John Wiley & Sons, 2014.
[23]
Peshkov V., Second sound in Helium II. Journal of Physics-USSR, 1944, 8: 381.
[24]
Amiri Delouei A., Emamian A., Sajjadi H., et al., A comprehensive review on Multi-dimensional heat conduction of multi-layer and composite structures: analytical solutions. Journal of Thermal Science, 2021, 30(6): 1875–1907.
[25]
Cattaneo C., Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena, 1948, 3: 83–101.
[26]
Cattaneo C., Sur une forme de l'equation de la chaleur eliminant la paradoxe d'une propagation instantantee. Compt Rendu, 1958, 247: 431–433.
[27]
Vernotte P., Sur quelques complications possibles dans les phenomenes de conduction de la chaleur. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1961, 252(15): 2190.
[28]
Liu Y., Li L., Lou Q., A hyperbolic lattice Boltzmann method for simulating non-Fourier heat conduction. International Journal of Heat and Mass Transfer, 2019, 131: 772–780.
[29]
Zhang X., Zhang L., Chu Z., Thermomechanical coupling of non-Fourier heat conduction with the CV model: thermal propagation in coating systems. Journal of Thermal Stresses, 2015, 38(10): 1104–1117.
[30]
Kumar A., Kumar S., Katiyar V., Telles S., Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model. Computers in Biology and Medicine, 2017, 84: 20–29.
[31]
Guo S., Wang B., Thermal shock fracture of a cylinder with a penny-shaped crack based on hyperbolic heat conduction. International Journal of Heat and Mass Transfer, 2015, 91: 235–245.
[32]
Lin S.M., Li C.Y., Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating. International Journal of Thermal Sciences, 2016, 110: 146–158.
[33]
Xu G., Wang J., Analytical solution of time fractional Cattaneo heat equation for finite slab under pulse heat flux. Applied Mathematics and Mechanics, 2018, 39(10): 1465–1476.
[34]
Lenarczyk M., Domański R., Non-Fourier effects in the thermal protection against high-power ultra-fast laser pulses. E3S Web of Conferences, 2018, EDP Sciences.
[35]
Nasri F., Guedri H., Aissa M.F.B., Trabelsi Y., Jaba N., Belmabrouk H., Atri M., Influence of Joule effect on thermal response of nano FinFET transistors. Superlattices and Microstructures, 2021, 156: 106980.
[36]
Nasri F., Aissa M.B., Belmabrouk H., Microscale thermal conduction based on Cattaneo-Vernotte model in silicon on insulator and Double Gate MOSFETs. Applied Thermal Engineering, 2015, 76: 206–211.
[37]
Malekzadeh P., Nejati R., Non-fourier heat transfer analysis of functionally graded spherical shells under convection-radiation conditions. Journal of Oil, Gas and Petrochemical Technology, 2014, 1(1): 73–86.
[38]
Najibi A., Wang G.H., Two-dimensional CV heat conduction investigation of an FG-finite axisymmetric hollow cylinder. Symmetry, 2023, 15(5): 1009.
[39]
Christov C., Jordan P., Heat conduction paradox involving second-sound propagation in moving media. Physical Review Letters, 2005, 94(15): 154301.
[40]
Bai C., Lavine A., On hyperbolic heat conduction and the second law of thermodynamics, 1995.
[41]
Yen C.C., Wu C.Y., Modelling hyperbolic heat conduction in a finite medium with periodic thermal disturbance and surface radiation. Applied Mathematical Modelling, 2003, 27(5): 397–408.
[42]
Anisimov S., Kapeliovich B., Perel’Man T., Electron-emission from surface of metals induced by ultrashort laser pulses. Soviet Physics - Technical Physics, 1967, 11: 945.
[43]
Fann W., Storz R., Tom H., Bokor J., Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films. Physical Review Letters, 1992, 68(18): 2834.
[44]
Qiu T., Tien C., Femtosecond laser heating of multi-layer metals—I. Analysis. International Journal of Heat and Mass Transfer, 1994, 37(17): 2789–2797.
[45]
Wang F.F., Wang B., Current research progress in non-classical Fourier heat conduction. Applied Mechanics and Materials, 2014, 442: 187–196.
[46]
Guyer R., Krumhansl J., Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Physical Review, 1966, 148(2): 778.
[47]
Guyer R.A., Krumhansl J., Solution of the linearized phonon Boltzmann equation. Physical Review, 1966, 148(2): 766.
[48]
Dong Y., Dynamical analysis of non-Fourier heat conduction and its application in nanosystems. Springer, 2015.
[49]
Dong Y., Cao B.Y., Guo Z.Y., Temperature in nonequilibrium states and non-Fourier heat conduction. Physical Review E, 2013, 87(3): 032150.
[50]
Calvo-Schwarzwälder M., Myers T.G., Hennessy M.G., The one-dimensional Stefan problem with non-Fourier heat conduction. International Journal of Thermal Sciences, 2020, 150: 106210.
[51]
Wang H.D., Theoretical and experimental studies on non-Fourier heat conduction based on thermomass theory. Springer Science & Business Media, 2014.
[52]
Tzou D.Y., The generalized lagging response in small-scale and high-rate heating. International Journal of Heat and Mass Transfer, 1995, 38(17): 3231–3240.
[53]
Najibi A., Shojaeefard M.H., Fourier and time-phase-lag heat conduction analysis of the functionally graded porosity media. International Communications in Heat and Mass Transfer, 2022, 136: 106183.
[54]
Mao Y., Liu S., Liu J., Yu M., Li X., Yang K., Non-Fourier heat conduction of nano-films under ultra-fast laser. Materials, 2023, 16(14): 4988.
[55]
Shen B., Zhang P., Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model. International Journal of Heat and Mass Transfer, 2008, 51: 1713–1727.
[56]
Choudhuri S.R., On a thermoelastic three-phase-lag model. Journal of Thermal Stresses, 2007, 30(3): 231–238.
[57]
Green A., Naghdi P., On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 1992, 15(2): 253–264.
[58]
Green A., Naghdi P., Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31(3): 189–208.
[59]
Ezzat M.A., El Karamany A.S., Fayik M.A., Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Archive of Applied Mechanics, 2012, 82: 557–572.
[60]
Sur A., Kanoria M., Thermoelastic interaction in a viscoelastic functionally graded half-space under three-phase-lag model. European Journal of Computational Mechanics, 2014, 23(5–6): 179–198.
[61]
Kar A., Kanoria M., Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. European Journal of Mechanics-A/Solids, 2009, 28(4): 757–767.
[62]
Abbas I.A., Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer. Journal of Central South University, 2015, 22: 1606–1613.
[63]
Akbarzadeh A., Pasini D., Phase-lag heat conduction in multilayered cellular media with imperfect bonds. International Journal of Heat and Mass Transfer, 2014, 75: 656–667.
[64]
Shi Z., Peng W., He T., Analysis to the dynamic response of a functionally graded spherical microshell in consideration of fractional-order dual-phase-lag heat conduction and nonlocal effect. Numerical Heat Transfer, Part A: Applications, 2024: 1–19.
[65]
Fu Z.J., Yang L.W., Xi Q., Liu C.S., A boundary collocation method for anomalous heat conduction analysis in functionally graded materials. Computers & Mathematics with Applications, 2021, 88: 91–109.
[66]
Abouelregal A., Zenkour A., Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model. Journal of Computational Applied Mechanics, 2019, 50(1): 148–156.
[67]
Abouelregal A.E., Mathematical modeling of functionally graded nanobeams via fractional heat conduction model with non-singular kernels. Archive of Applied Mechanics, 2023, 93(3): 977–995.
[68]
Zhang X.Y., Xie Y.J., Li X.F., Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction. Applied Mathematical Modelling, 2019, 70: 328–349.
[69]
Raveshi M.R., Amiri S., Keshavarz A., Analysis of one-dimensional hyperbolic heat conduction in a functionally graded thin plate. ASME/JSME Thermal Engineering Joint Conference, 2011, Paper No: AJTEC2011-44237, T10035.
[70]
Akbarzadeh A., Chen Z., Heat conduction in one-dimensional functionally graded media based on the dual-phase-lag theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2013, 27(4): 744–759.
[71]
Najafabadi M.M., Ahmadian M., Taati E., Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling. Composites Part B: Engineering, 2014, 60: 413–422.
[72]
Zhou F.X., Application of the reverberation-ray matrix to the non-Fourier heat conduction in functionally graded materials. Zeitschrift für Naturforschung A, 2016, 71(2): 113–119.
[73]
Raveshi M., Non-Fourier heat conduction in an exponentially graded slab. Journal of Applied Mechanics and Technical Physics, 2016, 57: 326–336.
[74]
Yang W., Chen Z., Investigation of the thermal-elastic problem in cracked semi-infinite FGM under thermal shock using hyperbolic heat conduction theory. Journal of Thermal Stresses, 2019, 42(8): 993–1010.
[75]
Zenkour A.M., Abouelregal A.E., Vibration of FG nanobeams induced by sinusoidal pulse-heating via a nonlocal thermoelastic model. Acta Mechanica, 2014, 225: 3409–3421.
[76]
Zhou Y.T., Zhang C., Zhong Z., Wang L., Transient thermo-electro-elastic contact analysis of a sliding punch acting on a functionally graded piezoelectric strip under non-Fourier heat conduction. European Journal of Mechanics-A/Solids, 2019, 73: 90–100.
[77]
Wakif A., Zaydan M., Sehaqui R., Further insights into steady three-dimensional MHD Sakiadis flows of radiating-reacting viscoelastic nanofluids via Wakif’s-Buongiorno and Maxwell’s models. Journal of Umm Al-Qura University for Applied Sciences, 2024: 1–13.
[78]
El Harfouf A., Wakif A., Hayani Mounir S., New insights into MHD squeezing flows of reacting-radiating Maxwell nanofluids via Wakif’s-Buongiorno point of view. Journal of Umm Al-Qura University for Applied Sciences, 2024, 10: 718–732.
[79]
Alghamdi M., Wakif A., Muhammad T., Efficient passive GDQLL scrutinization of an advanced steady EMHD mixed convective nanofluid flow problem via Wakif-Buongiorno approach and generalized transport laws. International Journal of Modern Physics B, 2024, 38(31): 2450418.
[80]
Yang W., Pourasghar A., Chen Z., Transient non-Fourier thermoelastic fracture analysis of a cracked orthotropic functionally graded strip. Mathematics and Mechanics of Solids, 2022, 27(3): 371–389.
[81]
Yang W., Pourasghar A., Chen Z., Non-fourier thermal fracture analysis of a Griffith interface crack in orthotropic functionally graded coating/substrate structure. Applied Mathematical Modelling, 2022, 104: 548–566.
[82]
Yang W., Pourasghar A., Chen Z., Zhang X., Non-Fourier thermoelastic interaction of two collinear cracks in a Functionally graded layer. Applied Mathematical Modelling, 2023, 122: 417–434.
[83]
Babaei M.H., Chen Z., Transient hyperbolic heat conduction in a functionally graded hollow cylinder. Journal of Thermophysics and Heat Transfer, 2010, 24(2): 325–330.
[84]
Keles I., Conker C., Transient hyperbolic heat conduction in thick-walled FGM cylinders and spheres with exponentially-varying properties. European Journal of Mechanics-A/Solids, 2011, 30(3): 449–455.
[85]
Akbarzadeh A., Chen Z., Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory. International Journal of Thermophysics, 2012, 33: 1100–1125.
[86]
Sharma J., Sharma P., Mishra K.C., Analysis of free vibrations in axisymmetric functionally graded thermoelastic cylinders. Acta Mechanica, 2014, 225(6): 1581–1594.
[87]
Akbarzadeh A., Chen Z., Transient heat conduction in functionally graded hollow cylinders and spheres. Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2012.
DOI: 10.1115/PVP2012-78617
[88]
Akbarzadeh A., Fu J., Chen Z., Three-phase-lag heat conduction in a functionally graded hollow cylinder. Transactions of the Canadian Society for Mechanical Engineering, 2014, 38(1): 155–171.
[89]
Yang Y.C., Wang S., Lin S.C., Dual-phase-lag heat conduction in a furnace wall made of functionally graded materials. International Communications in Heat and Mass Transfer, 2016, 74: 76–81.
[90]
Eshraghi I., Soltani N., Dag S., Hyperbolic heat conduction based weight function method for thermal fracture of functionally graded hollow cylinders. International Journal of Pressure Vessels and Piping, 2018, 165: 249–262.
[91]
Ma X.B., Wang F., Chen D.Z., Temperature distributions at the surface of functionally graded materials containing a cylindrical defect. Journal of Applied Physics, 2014, 115(20): 203505.
[92]
Daneshjou K., Bakhtiari M., Parsania H., Fakoor M., Non-Fourier heat conduction analysis of infinite 2D orthotropic FG hollow cylinders subjected to time-dependent heat source. Applied Thermal Engineering, 2016, 98: 582–590.
[93]
Singh S., Jain P.K., Analytical solution to transient heat conduction in polar coordinates with multiple layers in radial direction. International journal of thermal Sciences, 2008, 47(3): 261–273.
[94]
Hu C., Fang X.Q., Du S.Y., Multiple scattering of thermal waves from a subsurface spheroid in exponentially graded materials based on non-Fourier’s model. Infrared Physics & Technology, 2007, 50(1): 70–77.
[95]
Wilcox C.H., Theory of Bloch waves. Journal d’Analyse Mathématique, 1978, 33(1): 146–167.
[96]
Fu J., Hu K., Qian L., Chen Z., Non-Fourier heat conduction of a functionally graded cylinder containing a cylindrical crack. Advances in Mathematical Physics, 2020, Article ID: 8121295.
[97]
Ghasemi M.H., Hoseinzadeh S., Memon S., A dual-phase-lag (DPL) transient non-Fourier heat transfer analysis of functional graded cylindrical material under axial heat flux. International Communications in Heat and Mass Transfer, 2022, 131: 105858.
[98]
Babaei M., Chen Z., Hyperbolic heat conduction in a functionally graded hollow sphere. International Journal of Thermophysics, 2008, 29: 1457–1469.