[1] Ueno S., Esaki H., Harada K., Magnetic field effects on combustion. IEEE Translation Journal on Magnetics in Japan, 1987, 2(9): 861–862.
[2] Wakayama N.I., Behavior of gas flow under gradient magnetic fields. Journal of Applied Physics, 1991, 69(4): 2734–2736.
[3] Wakayama N.I., Magnetic promotion of combustion in diffusion flames. Combustion and Flame, 1993, 93(3): 207–214.
[4] Fan L., Savard B., Carlyle S., et al., Simultaneous stereo-PIV and OH×CH2O PLIF measurements in turbulent ultra lean CH4/H2 swirling wall-impinging flames. Proceedings of the Combustion Institute, 2023, 39(2): 2179–2188.
[5] Aoki T., Radicals’ emissions and butane diffusion flames exposed to upward-decreasing magnetic fields. Japanese Journal of Applied Physics, 1989, 28(5R): 776.
[6] Aoki T., Radical emissions and anomalous reverse flames appearing in upward-increasing magnetic fields. Japanese Journal of Applied Physics, 1990, 29(1R): 181.
[7] Aoki T., Radical emissions and butane diffusion flames exposed to uniform magnetic fields encircled by magnetic gradient fields. Japanese Journal of Applied Physics, 1990, 29(5R): 952.
[8] Sharma S., Sheoran G., Shakher C., Temperature measurement of axisymmetric flame under the influence of magnetic field using lensless Fourier transform digital holography. Applied Optics, 2012, 51(19): 4554–4562.
[9] Kumar M., Agarwal S., Kumar V., et al., Experimental investigation on butane diffusion flames under the influence of magnetic field by using digital speckle pattern interferometry. Applied Optics, 2015, 54(9): 2450–2460.
[10] Xie Y., Wei Z., Zhou T., et al., Combustion characteristics of small laminar flames in an upward decreasing magnetic field. Energies, 2021, 14(7): 1969.
[11] Revanth A., Malaikannan G., Malhotra V., On the effect of repulsive magnetic field on partially premixed flames. IOP Conference Series: Materials Science and Engineering, 2020, 912(4): 042020.
[12] Jiancun G., Xigang Y., Shoutao H., et al., Effects of magnetic fields on combustion and explosion. Chemistry and Technology of Fuels and Oils, 2022, 58(2): 379–390.
[13] Yamada E., Shinoda M., Yamashita H., et al., Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame. Combustion and flame, 2003, 135(4): 365–379.
[14] He Y., Wang Z., Yang L., et al., Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel, 2012, 95: 206–213.
[15] Kumar S., Zhao W., Alwahabi Z.T., et al., Temperature imaging of elevated pressure flames using planar laser induced fluorescence. Proceedings of the Combustion Institute, 2024, 40(1–4): 105705.
[16] Ahmed P., Thorne B.J.A., Yang J., Development of a multiple laser-sheet imaging technique for the analysis of three-dimensional turbulent explosion flame structures. Physics of Fluids, 2024, 36(8): 085112.
[17] Bilal M., Jamil Y., Tian Z. Y., Laser induced breakdown spectroscopy study of non-premixed flames with machine learning. Engineered Science, 2022, 21(2): 773.
[18] Müller M.N., Wang Q., Cai W., et al., Tomographic single-shot time-resolved laser-induced incandescence for soot characterization in turbulent flames. Proceedings of the Combustion Institute, 2024, 40(1–4): 105262.
[19] Bilal M., Tian Z., Recent development and applications of particle image velocimetry from laboratory to industry (Invited). Acta Photonica Sinica, 2023, 52(3): 0352103.
[20] Wang S., Elbaz A.M., Hochgreb S., et al., Local statistics of turbulent spherical expanding flames for NH3/CH4/H2/air measured by 10 kHz PIV. Proceedings of the Combustion Institute, 2024, 40(1–4): 105251.
[21] Gao H., Li T., Wang Y., et al., Flame structure and stability for gradient magnetic field enhanced non-premixed combustion of highly diluted methane with nitrogen. Journal of the Energy Institute, 2024, 115: 101683.
[22] Gao H., Wang Y., Zhou M., et al., Exploring the stabilization mechanism of NH3/CH4 non-premixed flames under gradient magnetic fields. International Journal of Hydrogen Energy, 2024, 73: 165–173.
[23] Gao H., Wang Y., Wang Y., et al., Understanding flame behaviors under gradient magnetic fields: The dynamics of non-reacting gas jets. International Communications in Heat and Mass Transfer, 2024, 159: 108066.
[24] Yang K., Xu L., Qi D., et al., Magnetic field effects on characteristics of counterflow diffusion ethylene flame: An experimental study. Journal of the Energy Institute, 2023, 108: 101231.
[25] Calvert M., Baker J., Saito K., et al., An analytical model for non-uniform magnetic field effects on two-dimensional laminar jet diffusion flames. Sixth International Microgravity Combustion Workshop, 2001.
https://ntrs.nasa.gov/citations/20010074089.
[26] Zake M., Barmina I., Bucenieks I., et al., Magnetic field control of combustion dynamics of the swirling flame flow. Magnetohydrodynamics, 2010, 46(2): 171–186.
[27] Khaldi F., Messadek K., Benselama A.M., Isolation of gravity effects on diffusion flames by magnetic field. Microgravity Science and Technology, 2010, 22: 1–5.
[28] Groń T., Pacyna A.W., Malicka E., Influence of temperature independent contribution of magnetic susceptibility on the Curie-Weiss law. Solid State Phenomena, 2011, 170: 213–218.
[29] Gillon P., Badat W., Gilard V., et al., Magnetic effects on flickering methane/air laminar jet diffusion flames. Combustion Science and Technology, 2016, 188(11‒12): 1972–1982.
[30] Ueno S., Quenching of flames by magnetic fields. Journal of Applied Physics, 1989, 65(3): 1243–1245.
[31] Gillon P., Blanchard J., Gilard V., Methane/air-lifted flames in magnetic gradients. Combustion Science and Technology, 2010, 182(11–12): 1805–1819.
[32] Thielicke W., Stamhuis E.J., PIVlab-time-resolved digital particle image velocimetry tool for MATLAB. Published under the BSD license, programmed with MATLAB.
DOI: 10.6084/M9.FIGSHARE.1092508.V5.
[33] Manickam Sureshkumar E., Arjomandi M., Dally B.B., et al., Energy concentration by bluff bodies—A Particle Image Velocimetry investigation. Journal of Fluids Engineering, 2019, 141(6): 061105.
[34] Thielicke W., Stamhuis E.J., PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2014, 2: e30. DOI: 10.5334/jors.bl.