Combustion and reaction

Jet Flame Characteristics of High-Temperature Gas-Solid Mixed Fuels

  • LU Yu ,
  • FANG Neng ,
  • LI Wei ,
  • GUO Shuai ,
  • WU Yujun ,
  • HU Yujie ,
  • REN Qiangqiang
Expand
  • 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. State Key Laboratory of Coal Conversion, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    4. College of Coal Engineering, Shanxi Datong University, Datong 037003, China

Online published: 2025-03-05

Supported by

This study is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant number XDA29020300), CAS Project for Young Scientists in Basic Research (Grant number YSBR-028) and Youth Innovation Promotion Association CAS (Grant number 2020150).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Preheating combustion/gasification technology enables efficient and environmentally friendly utilization of coal resources, but the research on the flow and reaction characteristics of high-temperature gas-solid mixed fuels produced by the technology still needs to be further explored. The flame can intuitively show the jet, mixing and reaction of fuel and oxidant at the outlet of the burner. Therefore, this study investigates the jet flame characteristics of high-temperature gas-solid mixed fuels on a self-designed test platform. High temperature and gas-solid mixing are the special features of the fuel in this study, which are different from other studies. Therefore, we first qualitatively compare the jet flame characteristics of high-temperature gas-solid mixed fuel with traditional fuel. The preliminary results indicate that high-temperature gas-solid mixed fuels exhibit higher reactivity and a faster reaction rate compared to pulverized coal. As a result, it shows different characteristics in flame shape, ignition delay and ignition mode. The jet flame shape of high-temperature gas-solid mixed fuels closely resembles that of the pulverized coal group combustion flame, displaying a continuous cloud-like structure similar to the shape of a gas-fueled flame. Furthermore, the flame image does not show any significant ignition delay phenomenon. Building upon these results, this study also quantitatively analyzes the geometric parameters, temperature distribution and oscillation frequency of the high-temperature gas-solid mixed fuel jet flame under different secondary air equivalence ratios and primary air equivalence ratios, so that we can have a deeper understanding of the influence of operating parameters on the combustion/gasification process.

Cite this article

LU Yu , FANG Neng , LI Wei , GUO Shuai , WU Yujun , HU Yujie , REN Qiangqiang . Jet Flame Characteristics of High-Temperature Gas-Solid Mixed Fuels[J]. Journal of Thermal Science, 2025 , 34(2) : 653 -671 . DOI: 10.1007/s11630-025-2021-9

References

[1] Wang W., Li W., Lu Y., et al., Modification of melting combustion kinetic model of fine ash from entrained-flow gasifier. Journal of Thermal Science, 2024, 33(1): 300–310. DOI: 10.1007/s11630-023-1877-9.
[2] Chang S., Zhuo J., Meng S., et al., Clean coal technologies in China: Current status and future perspectives. Engineering, 2016, 2(4): 447–459. 
DOI: 10.1016/j.Eng.2016.04.015.
[3] Zhou L, Ren Q., Yang G., et al., Flow properties of entrained flow gasifier fine slag and network structure of its molten slag. Journal of Thermal Science, 2023, 32(5): 1878–1888. DOI: 10.1007/s11630-023-1874-z.
[4] Wang Y., Guo C.-H., Du C., et al., Carbon peak and carbon neutrality in China: Goals, implementation path, and prospects. China Geology, 2021, 4: 1–27. 
DOI: 10.31035/cg2021083.
[5] Zhu S., Hui J., Lyu Q., et al., Experimental study on pulverized coal combustion preheated by a circulating fluidized bed: Preheating characteristics for peak shaving. Fuel, 2022, 324: 124684. 
DOI: 10.1016/j.fuel.2022.124684.
[6] Fu J., Tang C., Jin W., et al., Study on laminar flame speed and flame structure of syngas with varied compositions using OH-PLIF and spectrograph. International Journal of Hydrogen Energy, 2013, 38(3): 1636–1643. DOI: 10.1016/j.ijhydene.2012.11.023.
[7] Wang J., Huang Z., Kobayashi H., et al., Laminar burning velocities and flame characteristics of CO-H2-CO2-O2 mixtures. International Journal of Hydrogen Energy, 2012, 37(24): 19158–19167. 
DOI: 10.1016/j.ijhydene.2012.07.103.
[8] Wang Z.H., Weng W.B., He Y., et al., Effect of H2/CO ratio and N2/CO2 dilution rate on laminar burning velocity of syngas investigated by direct measurement and simulation. Fuel, 2015, 141: 285–292. 
DOI: 10.1016/j.fuel.2014.10.040.
[9] Dong C., Zhou Q., Zhao Q., et al., Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures. Fuel, 2009, 88(10): 1858–1863.
DOI: 10.1016/j.fuel.2009.04.024.
[10] Zhou S., Yang W., Tan H., et al., Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature. Combustion and Flame, 2021, 233: 111594. 
DOI: 10.1016/j.combustflame.2021.111594.
[11] Wang J., Zhang M., Xie Y., et al., Correlation of turbulent burning velocity for syngas/air mixtures at high pressure up to 1.0 MPa. Experimental Thermal and Fluid Science, 2013, 50: 90–96. 
DOI: 10.1016/j.expthermflusci.2013.05.008.
[12] Zhang M., Wang J., Wu J., et al., Flame front structure of turbulent premixed flames of syngas oxyfuel mixtures. International Journal of Hydrogen Energy, 2014, 39(10): 5176–5185. DOI: 10.1016/j.ijhydene.2014.01.038.
[13] Zhao H., Wang J., Cai X., et al., Flame structure, turbulent burning velocity and its unified scaling for lean syngas/air turbulent expanding flames. International Journal of Hydrogen Energy, 2021, 46(50): 25699–25711. DOI: 10.1016/j.ijhydene.2021.05.090.
[14] Molcan P., Lu G., Bris T.L., et al., Characterisation of biomass and coal co-firing on a 3 MWth Combustion Test Facility using flame imaging and gas/ash sampling techniques. Fuel, 2009, 88(12): 2328–2334. 
DOI: 10.1016/j.fuel.2009.06.027.
[15] Smart J., Lu G., Yan Y., et al., Characterisation of an oxy-coal flame through digital imaging. Combustion and Flame, 2010, 157(6): 1132–1139. 
DOI: 10.1016/j.combustflame.2009.10.017.
[16] Zhang J., Kelly K.E., Eddings E.G., et al., Ignition in 40 kW co-axial turbulent diffusion oxy-coal jet flames. Proceedings of the Combustion Institute, 2011, 33(2): 3375–3382. DOI: 10.1016/j.proci.2010.06.106.
[17] Molina A., Shaddix C.R., Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings of the Combustion Institute, 2007, 31(2): 1905–1912. 
DOI: 10.1016/j.proci.2006.08.102.
[18] Shaddix C.R., Molina A., Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute, 2009, 32(2): 2091–2098. 
DOI: 10.1016/j.proci.2008.06.157.
[19] Liu Y., Geier M., Molina A., et al., Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions. International Journal of Greenhouse Gas Control, 2011, 5: S36–S46. 
DOI: 10.1016/j.ijggc.2011.05.028.
[20] Zhou K., Lin Q., Hu H., et al., The ignition characteristics and combustion processes of the single coal slime particle under different hot-coflow conditions in N2/O2 atmosphere. Energy, 2017, 136: 173–184. 
DOI: 10.1016/j.energy.2016.02.038.
[21] Zhou K., Lin Q., Hu H., et al., Ignition and combustion behaviors of single coal slime particles in CO2/O2 atmosphere. Combustion and Flame, 2018, 194: 250–263. DOI: 10.1016/j.combustflame.2018.05.004.
[22] Levendis Y.A., Joshi K., Khatami R., et al., Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame, 2011, 158(3): 452–465. 
DOI: 10.1016/j.combustflame.2010.09.007.
[23] Khatami R., Stivers C., Joshi K., et al., Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combustion and Flame, 2012, 159(3): 1253–1271. DOI: 10.1016/j.combustflame.2011.09.009.
[24] Riaza J., Khatami R., Levendis Y.A., et al., Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions. Combustion and Flame, 2014, 161(4): 1096–1108. 
DOI: 10.1016/j.combustflame.2013.10.004.
[25] Bai X., Lu G., Bennet T., et al., Measurement of coal particle combustion behaviors in a drop tube furnace through high-speed imaging and image processing. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings, 2016. http://doi.org/10.1109/i2mtc.2016.7520582.
[26] Xu K., Wu Y., Wang Z., et al., Experimental study on ignition behavior of pulverized coal particle clouds in a turbulent jet. Fuel, 2016, 167: 218–225. 
DOI: 10.1016/j.fuel.2015.11.027.
[27] Balusamy S., Schmidt A., Hochgreb S., Flow field measurements of pulverized coal combustion using optical diagnostic techniques. Experiments in Fluids, 2013, 54(5): 1534. DOI: 10.1007/s00348-013-1534-2.
[28] Balusamy S., Kamal M.M., Lowe S.M., et al., Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions: velocity and scalar field measurements. Experiments in Fluids, 2015, 56(5): 108. DOI: 10.1007/s00348-015-1965-z.
[29] Hwang S.M., Kurose R., Akamatsu F., et al., Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy & Fuels, 2005, 19(2): 382–392.
[30] Hwang S.-M., Kurose R., Akamatsu F., et al., Observation of detailed structure of turbulent pulverized-coal flame by optical measurement (part 1, time-averaged measurement of behavior of pulverized-coal particles and flame structure). JSME International Journal Series B Fluids and Thermal Engineering, 2006, 49(4): 1316–1327. 
DOI: 10.1299/jsmeb.49.1316.
[31] Hwang S.-M., Kurose R., Akamatsu F., et al., Observation of detailed structure of turbulent pulverized-coal flame by optical measurement (Part 2, instantaneous two-dimensional measurement of combustion reaction zone and pulverized-coal particles. JSME International Journal Series B Fluids and Thermal Engineering, 2006, 49(4): 1328–1335. 
DOI: 10.1299/jsmeb.49.1328.
[32] Lu Y., Fang N., Zhang B., et al., Effect of air distribution mode on jet flame and emission characteristics of high temperature gas-solid mixed fuel. Journal of the Energy Institute, 2024, 116:101741.
[33] González-Cencerrado A., Peña B., Gil A., Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner. Applied Energy, 2012, 94: 375–384. 
DOI: 10.1016/j.apenergy.2012.01.059.
[34] Zhu S., Zhu J., Lyu Q., et al., NO emissions under pulverized char combustion in O2/CO2/H2O preheated by a circulating fluidized bed. Fuel, 2019, 252: 512–521. 
DOI: 10.1016/j.fuel.2019.04.153.
[35] Fan P., Gong Y., Zhang Q., et al., Experimental study of the impinging flame height in an opposed multi-burner gasifier. Energy & Fuels, 2014, 28(8): 4895–4904. http://doi.org/10.1021/ef5007287.
[36] Zhao C., Li X., Wang X., et al., An experimental study of the characteristics of blended hydrogen-methane non-premixed jet flames. Process Safety and Environmental Protection, 2023, 174: 838–847. 
DOI: 10.1016/j.psep.2023.04.041.
[37] Matsui Y., Kamimoto T., Matsuoka S., A study on the time and space resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method. 1979 Automotive Engineering Congress and Exposition, 1979. 
DOI: 10.4271/790491.
[38] Shao L., Zhou Z., Chen L., et al., Study of an improved two-colour method integrated with the emissivity ratio model and its application to air- and oxy-fuel flames in industrial furnaces. Measurement, 2018, 123: 54–61.
DOI: 10.1016/j.measurement.2018.03.024.
[39] Xu W., Yan Y., Huang X., et al., Quantitative measurement of the stability of a pulverized coal fired flame through digital image processing and statistical analysis. Measurement, 2023, 206: 112328. 
DOI: 10.1016/j.measurement.2022.112328.
[40] Chen Z.B., Hu L.H., Huo R., et al., Flame oscillation frequency based on image Correlation. Journal of Combustion Science and Technology, 2008, 14(4): 367–371. (in Chinese)
DOI: 10.3321/j.issn:1006-8740.2008.04.015.
[41] Yan Y., Lu G., Colechin M.J.F., Monitoring and characterisation of pulverised coal flames using digital imaging techniques. Fuel, 2002, 81(5): 647–655. 
DOI: 10.1016/S0016-2361(01)00161-2.
[42] Lu G., Yan Y., Colechin M., A digital imaging based multifunctional flame monitoring system. IEEE Transactions on Instrumentation and Measurement, 2004, 53(4): 1152–1158. DOI: 10.1109/tim.2004.830571.
[43] Zhang J., Kelly K.E., Eddings E.G., et al., CO2 effects on near field aerodynamic phenomena in 40 kW, co-axial, oxy-coal, turbulent diffusion flames. International Journal of Greenhouse Gas Control, 2011, 5: S47–S57. 
DOI: 10.1016/j.ijggc.2011.05.022.
[44] Obando J., Lezcano C., Amell A., Experimental analysis of the addition and substitution of sub-bituminous pulverized coal in a natural gas premixed flame. Applied Thermal Engineering, 2017, 125: 232–239. 
DOI: 10.1016/j.applthermaleng.2017.07.003.
[45] Ma P., Huang Q., Wu Z., et al., Optical diagnostics on coal ignition and gas-phase combustion in co-firing ammonia with pulverized coal on a two-stage flat flame burner. Proceedings of the Combustion Institute, 2023, 39(3): 3457–3466. 
DOI: 10.1016/j.proci.2022.07.221.
[46] Tao C., Liu B., Dou Y., et al., The experimental study of flame height and lift-off height of propane diffusion flames diluted by carbon dioxide. Fuel, 2021, 290: 119958. DOI: 10.1016/j.fuel.2020.119958.
[47] Hottel H., Hawthorne W., Diffusion in laminar flame jets. Symposium on Combustion and Flame, and Explosion Phenomena. 3. Elsevier, 1948, pp: 254–266.
[48] Kang Y.-H., Wang Q.-H., Lu X.-F., et al., Experimental and theoretical study on the flow, mixing, and combustion characteristics of dimethyl ether, methane, and LPG jet diffusion flames. Fuel processing technology, 2015, 129: 98–112. 
DOI: 10.1016/j.fuproc.2014.09.004.
[49] Bragg G.M., Bednarik H.V., et al., Particulate diffusion across a plane turbulent jet. International Journal of Heat and Mass Transfer, 1975, 18(3): 443–451. 
DOI: 10.1016/0017-9310(75)90032-0.
[50] Sahu K., Kundu A., Ganguly R., et al., Effects of fuel type and equivalence ratios on the flickering of triple flames. Combustion and Flame, 2009, 156(2): 484–493. DOI: 10.1016/j.combustflame.2008.11.017.
[51] Lu G., Yan Y., Huang Y., et al., An intelligent vision system for monitoring and control of combustion flames. Measurement and Control, 1999, 32(7): 164–168.
DOI: 10.1177/002029409903200601.
[52] Li J., Zhang Y., Fuel variability effect on flickering frequency of diffusion flames. Frontiers of Energy and Power Engineering in China, 2009, 3(2): 134–140. 
DOI: 10.1007/s11708-009-0034-9.
[53] Kim J.H., Kim S.G., Lee K.M., et al., An experimental study on thermoacoustic instabilities in syngas-air premixed impinging jet flames. Fuel, 2019, 257: 115921. 
DOI: 10.1016/j.fuel.2019.115921.
[54] Peng J., Cao Z., Yu X., et al., Oscillation characterization of volatile combustion of single coal particles with multi-species optical diagnostic techniques. Fuel, 2020, 282: 118845. DOI: 10.1016/j.fuel.2020.118845.
[55] Lu G., Yan Y., Colechin M., et al., Monitoring of oscillatory characteristics of pulverized coal flames through image processing and spectral analysis. IEEE Transactions on Instrumentation and Measurement, 2006, 55(1): 226–231. DOI: 10.1109/tim.2005.861254.
Outlines

/