Heat and mass transfer

Specific Heat Capacity and Coordination Number of Nano-Confined Transcritical Water

  • ZHANG Bowei ,
  • JIANG Kun ,
  • ZHANG Jie ,
  • JIN Hui
Expand
  • State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2025-03-05

Supported by

This work was financially supported by the National Key R&D Program of China (2020YFA0714400) and the Fundamental Research Funds for the Central Universities (xzy022023036).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

In the field of nano energy, investigating the specific heat capacity and coordination number of nano-confined water is highly significant for gaining a better understanding of the energy and microstructure of confined water. In this work, we employed the method of molecular dynamics (MD) simulation to calculate the specific heat capacity at constant volume and coordination number of water molecules confined in carbon nanotubes (CNTs) under different conditions (T=600–700 K, P=21.776 and 25 MPa, CNT diameter=0.949–5.017 nm). The results showed that near the critical point, the specific heat capacity at constant volume of confined water was lower than that of bulk water, and the energy fluctuation showed a trend of first increasing and then remaining unchanged with the increase of temperature and CNT diameter. Among them, the saturation point of temperature is 650 K (reduced pressure Pr=1) and 660 K (Pr=1.15), and the saturation point of CNT diameter is 2.034 nm. Additionally, the pseudo-critical temperature of confined water was the same as bulk water, and it increased with the increase of critical pressure. Moreover, with the increase of CNT diameter, the coordination number of confined water increased rapidly, and reaches the saturation state when the CNT diameter is 2.034 nm. This investigation revealed the mass and energy characteristics of nano-confined water near the critical point, which could provide guidance for the critical phase transition of nano-confined water.

Cite this article

ZHANG Bowei , JIANG Kun , ZHANG Jie , JIN Hui . Specific Heat Capacity and Coordination Number of Nano-Confined Transcritical Water[J]. Journal of Thermal Science, 2025 , 34(2) : 498 -509 . DOI: 10.1007/s11630-025-2096-3

References

[1] Zhang K., Liang J., Liu H., Bao G., Wang H., Modeling of chemical-looping combustion process of methane with nickel-based oxygen carrier. Experimental and Computational Multiphase Flow, 2024, 6(2): 180–194.
[2] Chen X., Tian Z., Van P., Lewis D., Nathan G., Numerical simulation of hydrothermal liquefaction of algae in a lab-scale coil reactor. Experimental and Computational Multiphase Flow, 2022, 4(2): 1–8.
[3] Xiang H., Feng W., Chen Y., Single-atom catalysts in catalytic biomedicine. Advanced Materials, 2020, 32(8): 1905994.
[4] Liang X., Wang D., Zhao Z., Li T., Gao Y., Hu C., Coordination number dependent catalytic activity of single-atom cobalt catalysts for Fenton-like reaction. Advanced Functional Materials, 2022, 32(38): 2203001.
[5] Izadi A., Siavashi M., Rasam H., Xiong Q., MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Applied Thermal Engineering, 2020, 168: 114843. 
DOI: 10.1016/j.applthermaleng.2019.114843.
[6] Alves C., Mauricio J., Almeida R., Azevedo I., Digital twins of the water cooling system in a power plant based on fuzzy logic. Sensors, 2021, 21(20): 6737.
[7] Zhang B., Zhao X., Chen Y., Ge Z., Jin, H., Investigation of H2S diffusion in transcritical and supercritical water: a molecular dynamics simulation study. Industrial & Engineering Chemistry Research, 2023, 62(6): 3026–3037.
[8] Wang W., Zhao Q., Lu B., Shi J., Jin H., Pure hydrogen gas production in a coal supercritical water gasification system with CO2 as transporting medium. Applied Thermal Engineering, 2024, 237: 121529. 
DOI: 10.1016/j.applthermaleng.2023.121529.
[9] Jiang K., Zhang B., Wang W., Jin H., Effect of the variable physical properties on sub-and supercritical CO2 flowing over a stationary spherical particle. Physics of Fluids, 2022, 34(10): 103605. DOI: 10.1063/5.0121959.
[10] Wang Y., Xu J., Ma X., Interaction between neighboring supercritical water molecules and density fluctuation by molecular dynamics simulations. Journal of Thermal Science, 2022, 31(3): 907–922.
[11] Wang W., Lu B., Shi J., Zhao Q., Jin H., Investigation on a supercritical water gasification system with CO2 as transporting medium. Journal of Thermal Science, 2023, 32(4): 1614–1625.
[12] Li X., Wang H., Li Y., Jin H., Effects of physical properties of supercritical water on coarse graining of particle cluster. Particuology, 2023, 82: 166–178. 
DOI: 10.1016/j.partic.2023.02.004.
[13] Park J., Kwon J., Kim T., Kim M., Cha J., Jo H., Experimental study of a straight channel printed circuit heat exchanger on supercritical CO2 near the critical point with water cooling. International Journal of Heat and Mass Transfer, 2020, 150: 119364. 
DOI: 10.1016/j.ijheatmasstransfer.2020.119364.
[14] Li P., Wang H., Li X., Guo L., Jin H., Calculation method of friction coefficient on flat plate in supercritical water laminar boundary layer flow. Physics of Fluids, 2023, 35(5): 053613. DOI: 10.1063/5.0149833.
[15] Jiménez J., Crone S., Fogh E., Zayed M., Lortz R., Pomjakushina E., Conder, K., Läuchli A., Weber L., Wessel S., A quantum magnetic analogue to the critical point of water. Nature, 2021, 592(7854): 370–375.
[16] Simeoni G., Bryk T., Gorelli F., Krisch M., Ruocco G., Santoro M., Scopigno T., The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Physics, 2010, 6(7): 503–507.
[17] Artemenko S., Krijgsman P., Mazur V., The Widom line for supercritical fluids. Journal of Molecular Liquids, 2017, 238: 122–128. DOI: 10.1016/j.supflu.2022.105587.
[18] Yang N., Kang F., Zhang K., Zhou Y., Lin W., A strategy for CO2 capture and utilization towards methanol production at industrial scale: an integrated highly efficient process based on multi-criteria assessment. Energy Conversion and Management, 2023, 293: 117516. DOI: 10.1016/j.enconman.2023.117516.
[19] Zhou S., Ni R., Measurement of the specific heat capacity of water-based Al2O3 nanofluid. Applied Physics Letters, 2008, 92(9): 093123. DOI: 10.1063/1.2890431.
[20] Scuiller E., Dutournié P., Zbair M., Bennici S., New approach for measuring the specific heat capacity of reactive adsorbents using calorimetry. Journal of Chemical & Engineering Data, 2023, 68(8): 1865–1871.
[21] Yang X., Feng Y., Jin J., Liu Y., Cao B., Molecular dynamics simulation and theoretical study on heat capacities of supercritical H2O/CO2 mixtures. Journal of Molecular Liquids, 2020, 299: 112133. 
DOI: 10.1016/j.molliq.2019.112133.
[22] Rajabpour A., Akizi F., Heyhat M., Gordiz K., Molecular dynamics simulation of the specific heat capacity of water-Cu nanofluids. International Nano Letters, 2013, 3: 1–6. DOI: 10.1186/2228-5326-3-58.
[23] Alade I., Abd M., Saleh T., Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Structures & Nano-Objects, 2019, 17: 103–111. 
DOI: 10.1016/j.nanoso.2018.12.001.
[24] Lee W., Kim K., Jeong W., Zotti L., Pauly F., Cuevas J., Reddy P., Heat dissipation in atomic-scale junctions. Nature, 2013, 498(7453): 209–212.
[25] Moid M., Finkelstein Y., Moreh R., Maiti P., Microscopic study of proton kinetic energy anomaly for nanoconfined water. The Journal of Physical Chemistry B, 2019, 124(1): 190–198.
[26] Jin H., Wang C., Fan C., Simulation study on hydrogen-heating-power poly-generation system based on solar driven supercritical water biomass gasification with compressed gas products as an energy storage system. Journal of Thermal Science, 2020, 29(2): 365–377.
[27] Wang H., Liu Z., Lao J., Zhang S., Abzalimov R., Wang T., Chen X., High energy and power density peptidoglycan muscles through super-viscous nanoconfined water. Advanced Science, 2022, 9(15): 2104697.
[28] Sun Q., Dong J., Zhang Y., Tian L., Tu J., Numerical study of the effect of nasopharynx airway obstruction on the transport and deposition of nanoparticles in nasal airways. Experimental and Computational Multiphase Flow, 2022, 4(4): 399–408.
[29] Stolte N., Hou R., Pan D., Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Nature Communications, 2022, 13(1): 5932.
[30] Zheng L., Zhao Q., Dong, Y., Jin H., Bawaa B., Guo L., Molecular dynamics simulation of sub-and supercritical water extraction shale oil in slit nanopores. The Journal of Supercritical Fluids, 2023, 195: 105862. 
DOI: 10.1016/j.supflu.2023.105862.
[31] Sun C., Zhou R., Zhao Z., Bai B., Nanoconfined fluids: what can we expect from them? The Journal of Physical Chemistry Letters, 2020, 11(12): 4678–4692.
[32] Zhou R., Ma X., Li H., Sun C., Bai B., Specific heat capacity of confined water in extremely narrow graphene nanochannels. Frontiers in Energy Research, 2021, 9: 736713. DOI: 10.3389/fenrg.2021.736713.
[33] Sofos F., Karakasidis T., Nanoscale slip length prediction with machine learning tools. Scientific Reports, 2021, 11(1): 12520.
[34] Jin L., Noraldeen S., Zhou L., Du X., Effects of solid/liquid interface on size-dependent specific heat capacity of nanoscale water films: insight from molecular simulations. Fluid Phase Equilibria, 2021, 537: 113001. DOI: 10.1016/j.fluid.2021.113001.
[35] Morshed A., Das P., Bhuiyan Z., Effect of surface wettability on specific heat capacity of nano-confined liquid. Journal of Molecular Liquids, 2023, 383: 122115. DOI: 10.1016/j.molliq.2023.122115.
[36] Linstrom P., Mallard W., The NIST chemistry webbook: a chemical data resource on the internet. Journal of Chemical & Engineering Data, 2001, 46(5): 1059–1063.
[37] Saito R., Matsuo R., Kimura T., Dresselhaus G., Dresselhaus M., Anomalous potential barrier of double-wall carbon nanotube. Chemical physics letters, 2001, 348(3–4): 187–193.
[38] Wang Q., Liu L., Liu C., Song J., Gao X., Size effect in determining the water diffusion rate in carbon nanotubes. Journal of Molecular Liquids, 2021, 334: 116034. 
DOI: 10.1016/j.molliq.2021.116034.
[39] Striolo A., The mechanism of water diffusion in narrow carbon nanotubes. Nano letters, 2006, 6(4): 633–639.
[40] Zhang B., Zhao X., Zhang J., Wang J., Jin H., An investigation of the density of nano-confined subcritical/supercritical water. Energy 2023, 284: 129185. 
DOI: 10.1016/j.energy.2023.129185.
[41] Chen H., Johnson J., Sholl D., Transport diffusion of gases is rapid in flexible carbon nanotubes. The Journal of Physical Chemistry B, 2006, 110(5): 1971–1975.
[42] Alexiadis A., Kassinos S., Molecular simulation of water in carbon nanotubes. Chemical reviews, 2008, 108(12): 5014–5034.
[43] Thompson A., Aktulga H., Berger R., Bolintineanu D., Brown W., Crozier P., Veld P., Kohlmeyer A., Moore S., Nguyen T., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 2022, 271: 108171. 
DOI: 10.1016/j.cpc.2021.108171.
[44] Wang G., Hadjiconstantinou N., Why are fluid densities so low in carbon nanotubes? Physics of Fluids, 2015, 27(5): 052006.
[45] Mendonca B., Ternes P., Salcedo E., Oliveira A., Barbosa M., Water diffusion in carbon nanotubes: Interplay between confinement, surface deformation, and temperature. The Journal of Chemical Physics, 2020, 153(24): 244504.
[46] Zhao X., Jin H., Chen Y., Ge Z., Numerical study of H2, CH4, CO, O2 and CO2 diffusion in water near the critical point with molecular dynamics simulation. Computers & Mathematics with Applications, 2021, 81: 759–771. 
DOI: 10.1016/j.camwa.2019.11.012.
[47] Zhao X., Luo T., Jin H., A predictive model for self-, Maxwell-Stefan, and Fick diffusion coefficients of binary supercritical water mixtures. Journal of Molecular Liquids, 2021, 324: 114735. 
DOI: 10.1016/j.molliq.2020.114735.
[48] Cristiglio V., Cuello G., Piarristeguy A., Pradel A., The coordination number calculation from total structure factor measurements. Journal of Non-Crystalline Solids, 2009, 355(37–42): 1811–1814.
[49] Zhao X., Jin H., Investigation of hydrogen diffusion in supercritical water: a molecular dynamics simulation study. International Journal of Heat and Mass Transfer 2019, 133: 718–728. 
DOI: 10.1016/j.ijheatmasstransfer.2018.12.164.
Outlines

/