[1] Sarkar J., Ghosh P., Adil A., A review on hybrid nanofluids: recent research, development and applications. Renewable and Sustainable Energy Reviews, 2015, 43: 164–177.
[2] Muneeshwaran M., Srinivasan G., Muthukumar P., Wang C.-C., Role of hybrid-nanofluid in heat transfer enhancement—A review. International Communications in Heat and Mass Transfer, 2021, 125: 105341.
[3] Leong K., Ahmad K.K., Ong H.C., Ghazali M., Baharum A., Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renewable and Sustainable Energy Reviews, 2017, 75: 868–878.
[4] Wci´slik S., Efficient stabilization of mono and hybrid nanofluids. Energies, 2020, 13(15): 3793.
[5] Asokan N., Gunnasegaran P., Wanatasanappan V.V., Experimental investigation on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles. Thermal Science and Engineering Progress, 2020, 20: 100727.
[6] Ukueje W.E., Abam F.I., Obi A., A perspective review on thermal conductivity of hybrid nanofluids and their application in automobile radiator cooling. Journal of Nanotechnology, 2022, 2022: 2187932.
[7] Smaisim G.F., Mohammed D.B., Abdulhadi A.M., Uktamov K.F., Alsultany F.H., Izzat S.E., Ansari M.J., Kzar H.H., Al-Gazally M.E., Kianfar E., Nanofluids: properties and applications. Journal of Sol-Gel Science and Technology, 2022, 104(1): 1–35.
[8] Yu Q., Hou X., Zhang L., Jiang H., Ma Y., Ali M.K.A., Elaboration of thermophysical performance enhancement mechanism of functionalized boron nitride/graphite hybrid nanofluids. Advanced Powder Technology, 2023, 34(7): 104047.
[9] Borode A.O., Ahmed N.A., Olubambi P.A., Sharifpur M., Meyer J.P., Investigation of the thermal conductivity, viscosity, and thermal performance of graphene nanoplatelet-alumina hybrid nanofluid in a differentially heated cavity. Frontiers in Energy Research, 2021, 9: 737915.
[10] Huminic G., Huminic A., Hybrid nanofluids for heat transfer applications—A state-of-the-art review. International Journal of Heat and Mass Transfer, 2018, 125: 82–103.
[11] Wole-Osho I., Okonkwo E.C., Adun H., Kavaz D., Abbasoglu S., An intelligent approach to predicting the effect of nanoparticle mixture ratio, concentration and temperature on thermal conductivity of hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 2021, 144: 671–688.
[12] Zahmatkesh I., Sheremet M., Yang L., Heris S.Z., Sharifpur M., Meyer J.P., Ghalambaz M., Wongwises S., Jing D., Mahian O., Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. Journal of Molecular Liquids, 2021, 321: 114430.
[13] Selvarajoo K., Wanatasanappan V.V., Luon N.Y., Experimental measurement of thermal conductivity and viscosity of Al2O3-GO (80:20) hybrid and mono nanofluids: A new correlation. Diamond and Related Materials, 2024, 144: 111018.
https://doi.org/10.1016/j.diamond.2024.111018
[14] Sahoo R.R., Experimental study on the viscosity of hybrid nanofluid and development of a new correlation. Heat and Mass Transfer, 2020, 56: 3023–3033.
[15] Yal¸cın G., Öztuna S., Dalkılı¸c A.S., Wongwises S., Measurement of thermal conductivity and viscosity of ZNO-SiO2 hybrid nanofluids. Journal of Thermal Analysis and Calorimetry, 2022, 147: 8243–8259.
[16] Amin A.-T.M., Hamzah W.A.W., Oumer A.N., Thermal conductivity and dynamic viscosity of mono and hybrid organic-and synthetic-based nanofluids: A critical review. Nanotechnology Reviews, 2021, 10(1): 1624–1661.
[17] Babar H., Sajid M.U., Ali H.M., Viscosity of hybrid nanofluids: A critical review. Thermal Science, 2019, 23: 1713–1754.
[18] Scott T.O., Ewim D.R., Eloka-Eboka A.C., Hybrid nanofluids flow and heat transfer in cavities: A technological review. International Journal of Low-Carbon Technologies, 2022 17: 1104–1123.
[19] Tassaddiq A., Khan S., Bilal M., Gul T., Mukhtar S., Shah Z., Bonyah E., Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Advances, 2020, 10(5): 055317.
[20] Liu Y., Yin D., Tian M., Hu X., Chen X., Experimental investigation on the viscosity of hybrid nanofluids made of two kinds of nanoparticles mixed in engine oil. Micro & Nano Letters, 2018, 13(8): 1197–1202.
[21] Iqhwan M.A., Wai O.J., Gunnasegaran P., Preparation and characterization of CuO-Au hybrid nanofluid with different mixing ratio. Recent Advances in Intelligent Manufacturing, Springer, Singapore, 2023, pp. 117–126.
[22] Wanatasanapan V.V., Abdullah M., Gunnasegaran P., Effect of TiO2-Al2O3 nanoparticle mixing ratio on the thermal conductivity, rheological properties, and dynamic viscosity of water-based hybrid nanofluid. Journal of Materials Research and Technology, 2020, 9(6): 13781–13792.
[23] Nabwey H.A., Armaghani T., Azizimehr B., Rashad A.M., Chamkha A.J., A comprehensive review of nanofluid heat transfer in porous media. Nanomaterials, 2023, 13(5): 937.
[24] Alirezaie A., Hajmohammad M.H., Ahangar M.R.H., Esfe M.H., Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. Applied Thermal Engineering, 2018, 128: 373–380.
[25] Hemmat Esfe M., Esfandeh S., Rejvani M., Modeling of thermal conductivity of MWCNT-SiO2 (30:70%)/EG hybrid nanofluid, sensitivity analyzing and cost performance for industrial applications: an experimental based study. Journal of Thermal Analysis and Calorimetry, 2018, 131: 1437–1447.
[26] Mukherjee S., Mishra P.C., Chaudhuri P.: Thermo-economic performance analysis of Al2O3-water nanofluids—an experimental investigation. Journal of Molecular Liquids, 2020, 299: 112200.
[27] Ma M., Zhai Y., Yao P., Li Y., Wang H., Synergistic mechanism of thermal conductivity enhancement and economic analysis of hybrid nanofluids. Powder Technology, 2020, 373: 702–715.
[28] Poloju V.K., Mukherjee S., Mishra P.C., Aljuwayhel N.F., Ali N., Khadanga V., Estimation of the thermal properties of MgO-SiO2/water hybrid nanofluid and development of novel thermo-economically viable model for heat transfer applications. Heat and Mass Transfer, 2024, 60(2): 247–262.
[29] Anwar T., Kumam P., Muhammad S., New fractional model to analyze impacts of Newtonian heating, shape factor and ramped flow function on MgO-SiO2-kerosene oil hybrid nanofluid. Case Studies in Thermal Engineering, 2022, 38: 102361.
[30] Chadwell H., Asnes B., The standardization of a modified Ostwald viscometer. Journal of the American Chemical Society, 1930, 52(9): 3493–3507.
[31] Mukherjee S., Jana S., Mishra P.C., Chaudhuri P., Chakrabarty S., Experimental investigation on thermo-physical properties and subcooled flow boiling performance of Al2O3/water nanofluids in a horizontal tube. International Journal of Thermal Sciences, 2021, 159: 106581.
[32] NISTwebbook: Thermophysical Properties of Fluid Systems-webbook.nist.gov. https://webbook.nist.gov/chemistry/fluid/,2023.
[33] Maxwell, J.C., A treatise on electricity and magnetism, Clarendon press, 1873.
[34] Hamilton R.L., Crosser O., Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191.
[35] Brinkman H.C., The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics, 1952, 20(4): 571–571.
[36] Pak B.C., Cho Y.I., Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 1998, 11(2): 151–170.
[37] Xuan Z., Zhai Y., Ma M., Li Y., Wang H., Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. Journal of Molecular Liquids, 2021, 323: 114889.
[38] Hamid K.A., Azmi W., Nabil M., Mamat R., Sharma K., Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer, 2018, 116: 1143–1152.
[39] Garg J., Poudel B., Chiesa M., Gordon J., Ma J., Wang J., Ren Z., Kang Y., Ohtani H., Nanda J., Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. Journal of Applied Physics, 2008: 103(7): 074301.
[40] Mansour R.B., Galanis N., Nguyen C.T., Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids. Applied Thermal Engineering, 2007, 27(1): 240–249.
[41] Jr M.J.E., Comparing liquid coolants from both a thermal and hydraulic perspective. https://www.electronics-cooling.com/2006/08/comparing liquid coolants from both thermal and hydraulic perspective/, 2006 (Accessed on February 4, 2024).
[42] Zeta Potential Analysis. https://chem.libretexts.org/, 2016 (Accessed on February 4, 2024).
[43] Ghadimi A., Saidur R., Metselaar H., A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 2011, 54: 4051–4068.
[44] Dong S., Chen X., An improved model for thermal conductivity of nanofluids with effects of particle size and Brownian motion. Journal of Thermal Analysis and Calorimetry, 2017, 129: 1255–1263.