Engineering thermodynamics

Energy Conversion and Transmission of Electric Power Generation through Water Evaporation

  • CHEN Liang ,
  • WANG Lu ,
  • WANG Xinyi ,
  • ZHANG Bo ,
  • LI Zhen
Expand
  • Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

Online published: 2025-03-04

Supported by

This work was supported by the Tsinghua University China Mobile Communication Group Co., Ltd. Joint Research Institute Project (20232930009).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Water is a recyclable resource and the largest energy carrier on Earth. New hydropower generation technologies hold great promise for the future. However, there is a lack of evaluation standards for power generation performance. And, the mechanism of hydrovoltaic power generation lacks systematic clarity. In this study, a thermodynamic analysis method about hot and humid air energy conversion based on the principle of hydropower generation is established. To author’s knowledge, it is the first time that the maximum available energy of hydropower generation is analyzed by exergy and parametric calculations. The greater the difference, the higher the available energy. Also, a series of experiments were conducted to explore the power generation device materials, structural composition, and structural parameters, further clarifying the principle of electricity generation. And, the influence of temperature and relative humidity on the power generation performance was also studied. The increase in temperature can effectively increase the output electrical performance of the power generation. The open-circuit voltage and short-circuit current of water evaporation power generation with Al2O3 nanoparticles are higher than 2.5 V and 150 nA respectively. Through analysis, we propose relevant application strategies to provide theoretical and practical support for the development of green energy.

Cite this article

CHEN Liang , WANG Lu , WANG Xinyi , ZHANG Bo , LI Zhen . Energy Conversion and Transmission of Electric Power Generation through Water Evaporation[J]. Journal of Thermal Science, 2025 , 34(2) : 413 -428 . DOI: 10.1007/s11630-024-2084-z

References

[1] Dudley B., Bp statistical review of world energy 2019. London, 2019.
[2] DiSalvo F., Thermoelectric cooling and power generation. Science, 1999, 285: 703–706.
[3] Qi L., Li H., Wu X., Zhang Z., Duan W., Yi M., A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges. Renewable Energy, 2021, 178: 1223–1235.
[4] Dos Santos Kremer I., Vieira M.C.C., Correa Neres M.A., Da Rosa E., Boita J., Hybrid electricity generation through residue-based nanogenerator. Renewable Energy, 2024, 221: 119870.
[5] Yar A., Karabiber A., Ozen A., Ozel F., Coskun S., Flexible nanofiber based triboelectric nanogenerators with high power conversion. Renewable Energy, 2020, 162: 1428–1437.
[6] Yin J., Zhou J., Fang S., Guo W., Hydrovoltaic energy on the way. Joule, 2020, 4(9): 1852–1855.
[7] Quincke G., Ueber die Fortf hrung materieller Theilchen durch str mende Elektricit. Annalen der Physik, 1861, 113: 513–598.
[8] Ghosh S., Sood A., Kumar N., Carbon nanotube flow sensors. Science, 2003, 299: 1042–1044.
[9] Zhang Z., Li X., Yin J., Xu Y., Fei W., Xue M., Wang Q., Zhou J., Guo W., Emerging hydrovoltaic technology. Nature Nanotechnology, 2018, 13(12): 1109–1119.
[10] Xue G., Xu Y., Ding T., Li J., Yin J., Fei W., Cao Y., Yu J., Yuan L., Gong L., Chen J., Deng S., Zhou J., Guo W., Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 2017, 12(4): 317–321.
[11] Shao C., Ji B., Xu T., Gao J., Gao X., Xiao Y., Zhao Y., Chen N., Jiang L., Qu L., Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Applied Materials & Interfaces, 2019, 11(34): 30927–30935.
[12] Zhou X., Zhang W., Zhang C., Tan Y., Guo J., Sun Z., Deng X., Harvesting electricity from water evaporation through microchannels of natural wood. ACS Applied Materials & Interfaces, 2020, 12(9): 11232–11239.
[13] Olthuis W., Schippers B., Eijkel J., van den Berg A., Energy from streaming current and potential. Sensors and Actuators B: Chemical, 2005, 111–112: 385–389.
[14] Zhang S., Chu W., Li L., Guo W., Voltage distribution in porous carbon black films induced by water evaporation. The Journal of Physical Chemistry C, 2021, 125(17): 8959–8964.
[15] Li L., Hao M., Yang X., Sun F., Bai Y., Ding H., Wang S., Zhang T., Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics. Nano Energy, 2020, 72: 104663 
[16] Ji B., Chen N., Shao C., Liu Q., Gao J., Xu T., Cheng H., Qu L., Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@TiO2 nanowires. Journal of Materials Chemistry A, 2019, 7(12): 6766–6772.
[17] Sun J., Li P., Qu J., Lu X., Xie Y., Gao F., Li Y., Gang M., Feng Q., Liang H., Xia X., Li C., Xu S., Bian J., Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy, 2019, 57: 269–278.
[18] Duan Y., Weng M., Zhang W., Qian Y., Luo Z., Chen L., Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Conversion and Management, 2021, 241: 114306.
[19] Hällström L., Koskinen T., Tossi C., Juntunen T., Tittonen I., Multiphysics simulation explaining the behaviour of evaporation-driven nanoporous generators. Energy Conversion and Management, 2022, 256: 115382.
[20] Zhao F., Cheng H., Zhang Z., Jiang L., Qu L., Direct Power Generation from a Graphene Oxide Film under Moisture. Advanced Materials, 2015, 27(29): 4351–4357.
[21] Zhao F., Liang Y., Cheng H., Jiang L., Qu L., Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy & Environmental Science, 2016, 9(3): 912–916.
[22] Xu T., Ding X., Shao C., Song L., Lin T., Gao X., Xue J., Zhang Z., Qu L., Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small, 2018, 14(14): 1704473.
[23] Liang Y., Zhao F., Cheng Z., Deng Y., Xiao Y., Cheng H., Zhang P., Huang Y., Shao H., Qu L., Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy & Environmental Science, 2018, 11(7): 1730–1735.
[24] Wang H., He T., Hao X., Huang Y., Yao H., Liu F., Cheng H., Qu L., Moisture adsorption-desorption full cycle power generation. Nature Communications, 2022, 13(1): 2524.
[25] Yan H., Liu Z., Qi R., Development and mechanism investigation of TiO2/CO hydrogel microgenerator utilizing humidity gradient. Energy Conversion and Management, 2023, 291: 117256.
[26] Araki J., Electrostatic or steric? – preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter, 2013, 9(16): 4125–4141.
[27] Haber N., Chemoelectronic mobilization of chemical  species in low-conductivity. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1982, 79: 272–276.
[28] Sparreboom W., van den Berg A., Eijkel J.C., Principles and applications of nanofluidic transport. Nature Nanotechnology, 2009, 4(11): 713–720.
[29] Bocquet L., Charlaix E, Nanofluidics from bulk to interfaces. Chemical Society Reviews, 2010, 39(3): 1073–1095.
[30] Nguyen T., Xie Y., de Vreede L.J., van den Berg A., Eijkel J.C., Highly enhanced energy conversion from the streaming current by polymer addition. Lab Chip, 2013, 13(16): 3210–3216.
[31] Hsu W.L., Daiguji H., Dunstan D.E., Davidson M.R., Harvie D.J.E., Electrokinetics of the silica and aqueous electrolyte solution interface: Viscoelectric effects. Advances in Colloid and Interface Science, 2016, 234: 108–131.
[32] Ho Lee S., Jung Y., Kim S., Han C.S., Flow-induced voltage generation in non-ionic liquids over monolayer graphene. Applied Physics Letters, 2013, 102(6): 063116.
[33] Chen X., Ding T., Wang L., Li Z., Experimental research and energy effectiveness analysis on chip-level two-stage loop thermosyphon system for data centre free cooling. Applied Thermal Engineering, 2024, 245: 122767.
[34] Zhang J., Cui P., Wang J., Meng H., Ge Y., Feng C., Liu H., Meng Y., Zhou Z., Xuan N., Zhang B., Cheng G., Du Z., Paper-based hydroelectric generators for water evaporation-induced electricity generation. Advanced Science, 2023, 10(31): 2304482.
[35] Qichang H., Yongji M., Guoping R., Bintian Z., Shungui Z., Water evaporation-induced electricity with Geobacter sulfurreducens biofilms. Science Advances, 2022, 8(15): 8047.
[36] Zhang G., Xu Y., Duan Z., Yu W., Liu C., Yao W., Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Applied Thermal Engineering, 2020, 166: 114623.
[37] A B., Advanced engineering thermodynamics. 1997.
[38] Luo Z., Liu C., Fan S., A moisture induced self-charging device for energy harvesting and storage. Nano Energy, 2019, 60: 371–376.
[39] Yang C., Huang Y., Cheng H., Jiang L., Qu L., Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Advanced Materials, 2019, 31(2): 1805705.
[40] Li M., Zong L., Yang W., Li X., You J., Wu X., Li Z., Li C., Biological nanofibrous generator for electricity harvest from moist air flow. Advanced Functional Materials, 2019, 29(32): 1901798.
[41] Zhao K., Lee J.W., Yu Z.G., Jiang W., Oh J.W., Kim G., Han H., Kim Y., Lee K., Lee S., Kim H., Kim T., Lee C.E., Lee H., Jang J., Park J.W., Zhang Y.W., Park C., Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS Nano, 2023, 17(6): 5472–5485.
[42] Wang H., Sun Y., He T., Huang Y., Cheng H., Li C., Xie D., Yang P., Zhang Y., Qu L., Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nature Nanotechnology, 2021, 16(7): 811–819.
[43] Huang Y., Cheng H., Yang C., Zhang P., Liao Q., Yao H., Shi G., Qu L., Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nature Communications, 2018, 9(1): 4166.
Outlines

/