[1] CO2 emissions in 2022–Analysis. IEA n.d. https://www.iea.org/reports/co2-emissions-in-2022 (accessed November 6, 2023).
[2] Swain A.K., Mohapatra P., Mishra J., Temporal variations of NDVI with responses to climate change in Mayurbhanj district of Odisha from 2015-2020. Journal of Technology & Innovation, 2022, 2(1): 11–15.
https://doi.org/10.26480/jtin.01.2022.11.15.
[3] da Silva Veras T., Mozer T.S., da Costa Rubim Messeder dos Santos D., da Silva César A., Hydrogen: Trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy 2017, 42: 2018–2033.
https://doi.org/10.1016/j.ijhydene.2016.08.219.
[4] Ratnakar R.R., Gupta N., Zhang K., et al., Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. International Journal of Hydrogen Energy, 2021, 46: 24149–24168.
https://doi.org/10.1016/j.ijhydene.2021.05.025.
[5] Abdalla A.M., Hossain S., Nisfindy O.B., et al., Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion and Management, 2018, 165: 602–627. https://doi.org/10.1016/j.enconman.2018.03.088.
[6] Baneshi J., Haghighi M., Jodeiri N., et al., Homogeneous precipitation synthesis of CuO-ZrO2-CeO2-Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Conversion and Management, 2014, 87: 928–937.
https://doi.org/10.1016/j.enconman.2014.07.058.
[7] Kappis K., Papavasiliou J., Avgouropoulos G., Methanol reforming processes for fuel cell applications. Energies, 2021, 14: 8442. https://doi.org/10.3390/en14248442.
[8] Sun Z., Aziz M., Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes. Journal of Cleaner Production, 2021, 321: 129023. https://doi.org/10.1016/j.jclepro.2021.129023.
[9] Bakhtyari A., Bardool R., Rahimpour M.R., et al., Performance analysis and artificial intelligence modeling for enhanced hydrogen production by catalytic bio-alcohol reforming in a membrane-assisted reactor. Chemical Engineering Science, 2023, 268: 118432.
https://doi.org/10.1016/j.ces.2022.118432.
[10] Ganesh I., Conversion of carbon dioxide into methanol—a potential liquid fuel: Fundamental challenges and opportunities (a review). Renewable and Sustainable Energy Reviews, 2014, 31: 221–257.
https://doi.org/10.1016/j.rser.2013.11.045.
[11] Monnerie N., Gan P.G., Roeb M., et al., Methanol production using hydrogen from concentrated solar energy. International Journal of Hydrogen Energy, 2020, 45: 26117–26125.
https://doi.org/10.1016/j.ijhydene.2019.12.200.
[12] Çelebi Y., Aydın H., An overview on the light alcohol fuels in diesel engines. Fuel, 2019, 236: 890–911.
https://doi.org/10.1016/j.fuel.2018.08.138.
[13] Ajamein H., Haghighi M., Alaei S., The role of various fuels on microwave-enhanced combustion synthesis of CuO/ZnO/Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming. Energy Conversion and Management, 2017, 137: 61–73.
https://doi.org/10.1016/j.enconman.2017.01.044.
[14] Gray J.T., Che F., McEwen J.-S., et al., Field-assisted suppression of coke in the methane steam reforming reaction. Applied Catalysis B: Environmental, 2020, 260: 118132. https://doi.org/10.1016/j.apcatb.2019.118132.
[15] Shanmugam V., Neuberg S., Zapf R., et al., Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: Effect of support and co-support. International Journal of Hydrogen Energy, 2020, 45: 1658–1670.
https://doi.org/10.1016/j.ijhydene.2019.11.015.
[16] Mei D., Qiu X., Liu H., et al., Progress on methanol reforming technologies for highly efficient hydrogen production and applications. International Journal of Hydrogen Energy, 2022, 47: 35757–35777. https://doi.org/10.1016/j.ijhydene.2022.08.134.
[17] Kim G.J., Kim M.S., Byun J.-Y., et al., Effects of Ru addition to Pd/Al2O3 catalysts on methanol steam reforming reaction: A mechanistic study. Applied Catalysis A: General, 2019, 572: 115–123.
https://doi.org/10.1016/j.apcata.2018.12.035.
[18] Cheng Z., Zhou W., Lan G., et al., High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy. Journal of Energy Chemistry, 2021, 63: 550–557. https://doi.org/10.1016/j.jechem.2021.08.025.
[19] Siriruang C., Charojrochkul S., Toochinda P., Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3. Monatshefte für Chemie-Chemical Monthly, 2016, 147: 1143–1151.
https://doi.org/10.1007/s00706-016-1662-5.
[20] Nehe P., Reddy V.M., Kumar S., Investigations on a new internally-heated tubular packed-bed methanol-steam reformer. International Journal of Hydrogen Energy, 2015, 40: 5715–5725.
https://doi.org/10.1016/j.ijhydene.2015.02.114.
[21] Liu H., Li Y., Lu C., et al., Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming. Bioresource Technology, 2023, 386: 129509.
https://doi.org/10.1016/j.biortech.2023.129509.
[22] Hsueh C.-Y., Chu H.-S., Yan W.-M., et al., Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Applied Energy, 2010, 87: 3137–3147.
https://doi.org/10.1016/j.apenergy.2010.02.027.
[23] Mei D., Qian M., Liu B., et al., A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming. Journal of Power Sources, 2012, 205: 367–376.
https://doi.org/10.1016/j.jpowsour.2011.12.062.
[24] Huang Y.-X., Jang J.-Y., Cheng C.-H., Fractal channel design in a micro methanol steam reformer. International Journal of Hydrogen Energy, 2014, 39: 1998–2007.
https://doi.org/10.1016/j.ijhydene.2013.11.088.
[25] Jiang W., Ma X., Zhang D., et al., Highly efficient catalysts for hydrogen generation through methanol steam reforming: A critical analysis of modification strategies, deactivation, mechanisms and kinetics. Journal of Industrial and Engineering Chemistry, 2023. https://doi.org/10.1016/j.jiec.2023.09.043.
[26] Zhang J., Zhang C., Li J., et al., Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation. Renewable Energy, 2021, 180: 313–328.
https://doi.org/10.1016/j.renene.2021.08.089.
[27] Song C., Liu Q., Ji N., et al., Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Applied Energy, 2015, 154: 392–401. https://doi.org/10.1016/j.apenergy.2015.05.038.
[28] Gurau V., Ogunleke A., Strickland F., Design of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-temperature proton exchange membrane fuel cell power system. International Journal of Hydrogen Energy, 2020, 45: 31745–3159.
https://doi.org/10.1016/j.ijhydene.2020.08.179.
[29] Sari A., Sabziani J., Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer. Journal of Power Sources, 2017, 352: 64–76.
https://doi.org/10.1016/j.jpowsour.2017.03.120.
[30] Ji F., Yang L., Li Y., et al., Performance enhancement by optimizing the reformer for an internal reforming methanol fuel cell. Energy Science & Engineering, 2019, 7: 2814–2824. https://doi.org/10.1002/ese3.461.
[31] Liu M., Shi Y., Cai N., Modeling of packed bed methanol steam reformer integrated with tubular high temperature proton exchange membrane fuel cell. Journal of Thermal Science, 2023, 32: 81–92.
https://doi.org/10.1007/s11630-022-1764-9.
[32] Chiu W.-C., Hou S.-S., Chen C.-Y., et al., Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system. Energy, 2022, 239: 122267. https://doi.org/10.1016/j.energy.2021.122267.
[33] Meng T., Cui D., Ji Y., et al., Optimization and efficiency analysis of methanol SOFC-PEMFC hybrid system. International Journal of Hydrogen Energy, 2022, 47: 27690–27702.
https://doi.org/10.1016/j.ijhydene.2022.06.102.
[34] Özcan O., Akın A.N., Methanol steam reforming kinetics using a commercial CuO/ZnO/Al2O3 catalyst: Simulation of a reformer integrated with HT-PEMFC system. International Journal of Hydrogen Energy, 2023, 48: 22777–22790.
https://doi.org/10.1016/j.ijhydene.2023.01.093.
[35] Perng S.-W., Wu H.-W., Effect of depth and diameter of cylindrical cavity in a plate-type methanol steam reformer on estimated net power of PEMFC. Energy Conversion and Management, 2018, 177: 190–209.
https://doi.org/10.1016/j.enconman.2018.09.066.
[36] Ribeirinha P., Abdollahzadeh M., Pereira A., et al., High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: Experimental and modelling. Applied Energy, 2018, 215: 659–669.
https://doi.org/10.1016/j.apenergy.2018.02.029.
[37] Lotrič A., Sekavčnik M., Hočevar S., Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications. Journal of Power Sources, 2014, 270: 166–182. https://doi.org/10.1016/j.jpowsour.2014.07.072.
[38] Ahmed M.M., Upadhyay R.K., Tiwari P., Techno economic comparison of combustor integrated steam reforming and sorption enhanced chemical looping steam reforming of methanol. Chemical Engineering Research and Design, 2023, 192: 299–309.
https://doi.org/10.1016/j.cherd.2023.02.025.
[39] Li G., Gu C., Zhu W., et al., Hydrogen production from methanol decomposition using Cu-Al spinel catalysts. Journal of Cleaner Production, 2018, 183: 415–423.
https://doi.org/10.1016/j.jclepro.2018.02.088.
[40] Baraj E., Ciahotný K., Hlinčík T., The water gas shift reaction: Catalysts and reaction mechanism. Fuel, 2021, 288: 119817. https://doi.org/10.1016/j.fuel.2020.119817.
[41] Pukrushpan J.T., Modeling and control of fuel cell systems and fuel processors. Dissertation Abstracts International, Volume: 64–02, Section: B, Page: 0925; Chairs: Anna Stefanopo 2003.
https://doi.org/10.1590/S1413-81232013000300003.
[42] Mann R.F., Amphlett J.C., Hooper M.A.I., et al., Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 2000, 86: 173–180.
https://doi.org/10.1016/S0378-7753(99)00484-X.
[43] Crespi E., Guandalini G., Gößling S., et al., Modelling and optimization of a flexible hydrogen-fueled pressurized PEMFC power plant for grid balancing purposes. International Journal of Hydrogen Energy, 2021, 46: 13190–13205.
https://doi.org/10.1016/j.ijhydene.2021.01.085.
[44] Wang L., Husar A., Zhou T., et al., A parametric study of PEM fuel cell performances. International Journal of Hydrogen Energy, 2003, 28: 1263–1272.
https://doi.org/10.1016/S0360-3199(02)00284-7.
[45] Hou Q., Ge P., Lu G., et al., A novel PEMFC-CHP system for methanol reforming as fuel purified by hydrogen permeation alloy membrane. Case Studies in Thermal Engineering, 2022, 36: 102176.
https://doi.org/10.1016/j.csite.2022.102176.