[1]
Tate E., Harpster M.O., Savagian P., The electrification of the automobile: From conventional hybrid, to plug-in hybrids, to extended-range electric vehicles. SAE International Journal of Passenger Cars Electronic & Electrical Systems, 2009, 1(1): 156–166.
[2]
Nakata K., Shimizu R., Toyota’s new combustion technology for high engine thermal efficiency and high engine output performance. Fortschritt-Berichte VDI, Reihe 12. Verkehrstechnik-Fahrzeugtechnik, 2016, Pt.2 TN.799, pp: 1–17.
[3]
Hakariya M., Toda T., Sakai M., The new Toyota inline 4-cylinder 2.5 L gasoline engine. SAE Technical Paper 2017-01-1021, 2017.
[4]
Yamaji K., Tomimatsu M., Takagi I., Higuchi A., New 2.0L I4 gasoline direct injection engine with Toyota new global architecture concept. SAE Technical Paper 2018-01-0370, 2018.
[5]
Lee B., Oh H., Han S., Woo S., Son J., Development of high efficiency gasoline engine with thermal efficiency over 42%. SAE Technical Paper 2017-01-2229, 2017.
[6]
Zhang G., Wang Q., Chen G., et al., Geely hybrid engine: world class efficiency for hybrid vehicles. 29th Aachen Colloquium Sustainable Mobility, 2020, pp: 65–95.
[7]
Jung D., Lee B., Son J., et al., Development of GDI engine for improving brake thermal efficiency over 44%. ASME 2019 Internal Combustion Engine Division Fall Technical Conference, 2019.
[8]
Yamaguchi R., Egawa T., Ushio N., Kasajima Y., et al., New 2.0 L inline 4-cylinder gasoline direct injection engine. SAE Technical Paper 2023-01-0400, 2023.
[9]
Yan B., Yao M., Mao B., et al., A comparative study on the fuel economy improvement of a natural gas SI engine at the lean-burn the and stoichiometric operation both with EGR under the premise of meeting EU6 emission legislation. SAE Technical Paper 2015-01-1958, 2015.
[10]
Adomeit P., Scharf J., Thewes M., et al., Extreme lean gasoline technology - best efficiency and lowest emission powertrains. Internationaler Motorenkongress, 2017, 2017: 101–122.
[11]
Sellers R., Osborne R., Cai W., Wang Y., Designing and testing the next generation of high-efficiency gasoline engine achieving 45% brake thermal efficiency. 28th Aachen Colloquium Automobile and Engine Technology, 2019, pp: 1129–1143.
[12]
Brannys S., Gehrke I.S., Hoffmeyer H., et al., Maximum efficiency concept of a 1.5 L TSI evo for future hybrid powertrains. 28th Aachen Colloquium Automobile and Engine Technology, 2019, pp: 99–120.
[13]
Bunce M., Blaxill H., Cooper A., Development of both active and passive prechamber jet ignition multi-cylinder demonstrator engines. 28th Aachen Colloquium Automobile and Engine Technology, 2019, pp: 907–941.
[14]
Attard W.P., Blaxill H., A lean-burn gasoline fueled prechamber jet ignition combustion system achieving high efficiency and low NOx at part load. SAE Technical Paper 2012-01-1146, 2012.
[15]
Attard W. P., Blaxill H., A gasoline fueled prechamber jet ignition combustion system at unthrottled conditions. SAE International Journal of Engines, 2012, 5(2): 315–329.
[16]
Anderson, E.K., Attard W.P., Brown A., et al., Experimental study of a prechamber jet igniter in a turbocharged Rotax 914 aircraft engine. SAE Technical Paper 2013-01-1629, 2013.
[17]
Sens M., Binder E., Prechamber ignition as a key technology for future powertrain fleets. MTZ Worldwide, 2019, 80: 44–51.
[18]
Alvarez C.E.C., Couto G.E., Roso V.R., et al., A review of prechamber ignition systems as lean combustion technology for SI engines. Applied Thermal Engineering, 2018, 128: 107–120.
[19]
Forte C., Bianchi G.M., Corti E., et al., Evaluation of the effects of a twin spark ignition system on combustion stability of a high performance PFI engine. Energy Procedia, 2015, 81: 897–906.
[20]
Bailkeri N., Prasad K., Rao S., Performance study on twin plug spark ignition engine at different ignition timings. International Journal of Science & Research, 2013, 2(8): 231–236.
[21]
Dubey A., Pareta A., Sharma P., Study of multiple spark ignition engines with single spark ignition engines on the basis of engine efficiency and emission characteristics size. International Journal of Current Engineering and Technology, 2014, 3: 14–17.
[22]
Matsuura K., Measurements of flame propagation in a rotary engine using rotor-installed ionization gaps. Transactions of the JSME, 2019, 85(869): 18–00312.
[23]
Sellnau M., Cho K., Zhang Y., Pathway to 50% brake thermal efficiency using gasoline direct injection compression ignition (GDCI). 28th Aachen Colloquium Automobile and Engine Technology, 2019, pp: 1145–1171.
[24]
Yang B., Wang H., Yao M., et al., Experimental investigation on the effects of injection strategy on combustion and emission in a heavy-duty diesel engine fueled with gasoline. SAE Technical Paper 2017-01-2266, 2017.
[25]
Nakai E., Goto T., Ezumi K., et al., Mazda SKYACTIV-X 2.0 L gasoline engine. 28th Aachen Colloquium Automobile and Engine Technology, 2019, pp: 55–78.
[26]
Li J., Zhao H., Ladommatos N., et al., Research and development of controlled auto-ignition (CAI) combustion in a 4-stroke multi-cylinder gasoline engine. SAE Technical Paper 2001-01-3608, 2001.
[27]
Xie H., Yang L., Qin J., et al., The effect of spark ignition on the CAI combustion operation. SAE Technical Paper 2005-01-3738, 2005.
[28]
Wang Z., Wang J., Shuai S., et al., Research on spark induced compression ignition (SICI). SAE Technical Paper 2009-01-0132, 2009.
[29]
Nagasawa T., Okura Y., Yamada R., et al., Thermal efficiency improvement of super-lean-burn spark ignition engine by stratified water insulation on piston top surface. International Journal of Engine Research, 2021, 22(5): 1421–1439.
[30]
Nakata K., Nogawa S., Takahashi D., Engine Technologies for achieving 45% thermal efficiency of S.I. engine. SAE Technical Paper 2015-01-1896, 2015.
[31]
Roethlisberger R.P., Favrat D., Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, part I: engine geometrical parameters. Applied Thermal Engineering, 2002, 22(11): 1217–1229.
[32]
Roethlisberger R.P., Favrat D., Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine: Part II: engine operating parameters and turbocharger characteristics. Applied Thermal Engineering, 2002, 22(11): 1231–1243.
[33]
Baumgartner L.S., Karmann S., Backes F., et al., Experimental investigation of orifice design effects on a methane fueled prechamber gas engine for automotive applications. SAE Technical Paper 2017-24-0096, 2017.
[34]
Tohru N., Yoshihiro N., Effect of dimensions of prechamber on lean-burn gas engine. JSME International Journal Series B Fluids and Thermal Engineering, 1994, 37(4): 951–956.
[35]
Yan B., Wang H., Zheng Z., et al., The effects of LIVC miller cycle on the combustion characteristics and thermal efficiency in a stoichiometric operation natural gas engine with EGR. Applied Thermal Engineering, 2017, 122: 439–450.
[36]
Heywood J.B., Internal combustion engine fundamentals. New York: McGraw-Hill, 1988, pp: 574–576.
[37]
Theis J.R., Kim J., Cavataio G., TWC+LNT/SCR systems for satisfying Tier 2, Bin 2 emission standards on lean-burn gasoline engines. SAE International Journal of Fuels and Lubricants, 2015, 8(2): 474–486.
[38]
Prikhodko V.Y., Parks J.E., Pihl J.A., Toops T.J., Ammonia generation over TWC for passive SCR NOx control for lean gasoline engines. SAE International Journal of Engines, 2014, 7(3): 1235–1243.
[39]
Prikhodko V.Y., Parks J.E., Pihl J.A., Toops T.J., Ammonia generation and utilization in a passive SCR (TWC+SCR) system on lean gasoline engine. SAE International Journal of Engines, 2016, 9(2): 1289–1295.