[1]
Vassilev S.V., Vassileva C.G., Vassilev V.S., Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 2015, 158: 330–350.
[2]
Vassilev S.V., Baxter D., Andersen L.K., Vassileva C.G., An overview of the chemical composition of biomass. Fuel, 2010, 89(5): 913–933.
[3]
Qiu S., Gao Y., Rinker G., Yanaga K., Development of an advanced free-piston Stirling engine for micro combined heating and power application. Applied Energy, 2019, 235: 987–1000.
[4]
Cardozo E., Erlich C., Malmquist A., Alejo L., Integration of a wood pellet burner and a Stirling engine to produce residential heat and power. Applied Thermal Engineering, 2014, 73(1): 671–680.
[5]
Damirchi H., Najafi G., Alizadehnia S., Mamat R., Sidik N.A.C., Azmi W.H., Noor M.M., Micro combined heat and power to provide heat and electrical power using biomass and gamma-type Stirling engine. Applied Thermal Engineering, 2016, 103: 1460–1469.
[6]
Ma Z.Q., Zhang Y.M., Zhang Q.S., Qu Y.B., Zhou J.B., Qin H.F., Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach. Energy, 2012, 46(1): 140–147.
[7]
Hoque M.E., Rashid F., Aziz M., Gasification and power generation characteristics of rice husk, sawdust, and coconut shell using a fixed-bed downdraft gasifier. Sustainability, 2021, 13(4): 2027.
[8]
Laohalidanond K., Kerdsuwan S., Burra K.R.G., Li J., Gupta A.K., Syngas generation from landfills derived torrefied refuse fuel using a downdraft gasifier. Journal of Energy Resources Technology, 2021, 143(5): 052102.
[9]
Gharehghani A., Ghasemi K., Siavashi M., Mehranfar S., Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review. Fuel, 2021, 304: 121411.
[10]
Weinberg F.J., Combustion temperatures: The future? Nature, 1971, 233: 239–241.
[11]
Song F., Wen Z., Dong Z., Wang E., Liu X., Numerical study and optimization of a porous burner with annular heat recirculation. Applied Thermal Engineering, 2019, 157: 113741.
[12]
Mueller K.T., Waters O., Bubnovich V., Orlovskaya N., Chen R.H., Super-adiabatic combustion in Al2O3 and SiC coated porous media for thermoelectric power conversion. Energy, 2013, 56: 108–116.
[13]
Francisco R.W., Rua F., Costa M., Catapan R.C., Oliveira A.A.M., On the combustion of hydrogen-rich gaseous fuels with low calorific value in a porous burner. Energy & Fuels, 2010, 24(2): 880–887.
[14]
Yang J.W., Chen W., Cao B.W., Liu X.H., Li H., Li X.H., Zhang D., Zhang H.L., Experimental investigation of the micro-power generation system based on porous burning. Applied Thermal Engineering, 2023, 234: 121205.
[15]
Schneider T., Müller D., Karl J., Biomass conversion with a fluidized bed-fired Stirling engine in a micro-scale chip plant. 26th European Biomass Conference and Exhibition Proceedings, Kopenhagen, Denmark, 2018, pp. 630–634.
[16]
Ma L.L., Wu C.Z., Sun L., Biomass gasification technology and application. Chemical Industry Press, Beijing, 2003. (in Chinese)
[17]
Henriksen U., Ahrenfeldt J., Jensen T.K., Gobel B., Bentzen J.D., Hindsgaul C., Sorensen L.H., The design, construction and operation of a 75 kW two-stage gasifier. Energy, 2006, 31(10–11): 1542–1553.
[18]
Barnard J.A., Bradley J.N., Bradley J.N., Flame and combustion. Chapman and Hall, London, New York, 1985.
[19]
Liu C., Yan B., Chen G., Bai X.S., Structures and burning velocity of biomass derived gas flames. International Journal of Hydrogen Energy, 2010, 35(2): 542–555.
[20]
Sathe S.B., Peck R.E., Tong T.W., Flame stabilization and multimode heat transfer in inert porous media: a numerical study. Combustion Science and Technology, 1990, 70: 93–109.
[21]
Fu X., Gore J.P., Viskanta R., A model for the volumetric radiation characteristics of cellular ceramics. International Communications in Heat and Mass Transfer, 1997, 24(8): 1069–1082.
[22]
Ngamchompoo W., Triratanasirichai K., Experimental investigation of high temperature air and steam biomass gasification in a fixed-bed downdraft gasifier. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(8): 733–740.
[23]
Ghorashi S.A., Hashemi S.A., Mollamandi M., Ghanbari M., Mahmoudi Y., Experimental investigation on flame characteristics in a porous-free flame burner. Heat and Mass Transfer, 2020, 56(7): 2057–2064.
[24]
Moffat R.J., Using uncertainty analysis in the planning of an experiment. Journal of Fluids Engineering, 1985, 107(2): 173–178.
[25]
Talukdar P., Mishra S.C., Trimis D., Durst F., Heat transfer characteristics of a porous radiant burner under the influence of a 2-D radiation field. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 84(4): 527–537.
[26]
Hsu P.F., Howell J.R., Measurement of thermal conductivity and optical properties of porous partially stabilized zirconia. Experimental Heat Transfer, 1992, 5(4): 293–313.
[27]
Zheng C.H., Cheng L.M., Li T., Luo Z.Y., Cen K.F., Filtration combustion characteristics of low calorific gas in SiC foams. Fuel, 2010, 89(9): 2331–2337.
[28]
Incropera F.P., DeWitt D.P., Bergman T.L., Lavine A.S., Fundamentals of Heat and Mass Transfer (6th edtion). John Wiley and Sons, New York, 2007.