[1] Zhang L., Ju X., Cui N., Ascent control of heavy-lift launch vehicle with guaranteed predefined performance. Aerospace Science and Technology, 2021, 110: 106511.
[2] Pu P., Jiang Y., Analyzing the impact of nitrogen ejection on suppression of rocket base heating. Aerospace Science and Technology, 2020, 107: 106275.
[3] Dufrene A., Space launch system base heating test: Experimental operations & results. San Diego, USA, AIAA, 2016, Article ID: 2016-0546. DOI: 10.2514/6.2016-0546
[4] Nallasamy R., Kandula M., Duncil L., Schallhorn P., Numerical simulation of the base flow and heat transfer characteristics of a four-nozzle clustered rocket engine. 40th Thermophysics Conference, Seattle, USA, 2008, AIAA, Article ID: 2008-4128. DOI: 10.2514/6.2008-4128
[5] Goethert E.B., Base flow characteristics of missiles with cluster-rocket exhausts. Institute of Aeronautical Science, 1960, 20(3): 60–89.
[6] Lim H.D., New T.H., Mariani R., Cui Y.D., Effects of bevelled nozzles on standoff shocks in supersonic impinging jets. Aerospace Science and Technology, 2019, 94: 105371.
[7] Raje P.V, Sinha K., Three-dimensional simulation of rocket nozzles with multi-jet interaction using shock-unsteadiness model. AIAA Aviation 2019 Forum, Texas, USA, 2019, AIAA, Article ID: 2019-3322. DOI: 10.2514/6.2019-3322
[8] Knox K.S, Mehta M, Dufrene A.T, Seaford C.M., Space launch system base heating test: Environments and base flow physics. 54th AIAA Aerospace Sciences Meeting, California, USA, 2016, AIAA 2016-0547. DOI: 10.2514/6.2016-0547
[9] Mehta M., Danehy P.M, Inman J., Gaddy D.E, Dufrene A., Optical diagnostic imaging of multi-rocket plume-induced base flow environments. 47th AIAA Fluid Dynamics Conference, Colorado, USA, 2017, AIAA 2017-3465. DOI: 10.2514/6.2017-3465
[10] Musial N.T.W., Base flow characteristics for several four-clustered rocket configurations at Mach numbers from 2.0 to 3.5. 1961, Patent number: NASA-TND-1093.
[11] Mehta M., Seaford C.M, Kirchner R.D, Dufrene A.T., Space launch system core-stage rocket engine development for shock-tunnel testing. Journal of Spacecraft and Rockets, 2017, 55: 382–402.
[12] Parker R.A., Carr Z.R., Dufrene A.T., Mehta M., Space launch system base heating test: tunable diode laser absorption spectroscopy. 54th AIAA Aerospace Sciences Meeting, California, USA, 2016, AIAA, Article ID: 2016-0548. DOI: 10.2514/6.2016-0548
[13] Zhou Z., Liang X., Zhao C., Le G., Ding Y., Investigations of base thermal environment on four-nozzle liquid launch vehicle at high altitude. Journal of Spacecraft and Rockets, 2019, 57: 49–57.
[14] Negishi H., Yamanishi N., Arita M., Namura E., Ohkubo S., Numerical analysis of plume heating environment for H-IIA launch vehicle during powered ascent. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, USA, 2007, AIAA, Article ID: 2007-5505. DOI: 10.2514/6.2007-5505
[15] Wang X., Xu X., Yang Q.C., Base thermal environment on multinozzle rocket configurations. Journal of Spacecraft and Rockets, 2022, 59(6): 1966–1975.
[16] Patel D., Antares liquid rocket engine convective base heating: AJ-26 to RD-181. AIAA Modeling and Simulation Technologies Conference, Washington, D.C., USA, 2016, AIAA, Article ID: 2016-4415. DOI: 10.2514/6.2016-4415
[17] Su H., Xu S., He W., Shen D., Research on the base heating environment of new launch vehicle. Missiles and Space Vehicles, 2021, 05: 20–24, 49.
[18] Yan Z.J., Shen D., Wu Y., Pu P.Y., Gong Y., Research on the base heating environment of a multi-nozzle heavy launch vehicle. Missiles and Space Vehicles, 2021, 01: 105–109, 114. (in Chinese)
[19] Chandra M.S., Chakraborty D., Plume interaction and base flow analysis of a twin engine flight vehicle. Journal of the Institution of Engineers (India): Series C, 2017, 98: 379–385.
[20] Pu P., Jiang Y., Assessing turbulence models on the simulation of launch vehicle base heating. International Journal of Aerospace Engineering, 2019, pp: 1–14. DOI: 10.1155/2019/4240980
[21] Zhou Z.T., Wang X., Lu C., Le G., Numerical analysis on thermal environment of liquid rocket with afterburning under different altitudes. Applied Thermal Engineering, 2020, 178: 115584.
[22] Yi J., Yanli M., Weichen W., Li W., Inhibition effect of water injection on afterburning of rocket motor exhaust plume. Chinese Journal of Aeronautics, 2010, 23: 653–659.
[23] Pergament H.S., Calcote H.F., Thermal and chemi-ionization processes in afterburning rocket exhausts. Symposium (International) on Combustion, 1967, 11: 597–611.
[24] Yang Y., Yuan Y., Ding Z., Yang J., Analysis of plume flow field and base heating environment of multi-engine cluster rocket. Journal of Astronautics, 2021, 42: 1446–1452.
[25] Houshang B., Numerical investigation of twin-nozzle rocket plume phenomenology. Journal of Propulsion and Power, 2000, 16: 178–186.