Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity

ZHAO Chenggong, LI Yifan, MA Manping, KAN Ankang, XIE Huaqing, YU Wei

Journal of Thermal Science ›› 2023, Vol. 32 ›› Issue (4) : 1558-1568.

PDF(19493 KB)
PDF(19493 KB)
Journal of Thermal Science ›› 2023, Vol. 32 ›› Issue (4) : 1558-1568. DOI: 10.1007/s11630-023-1810-2  CSTR: 32141.14.JTS-023-1810-2

Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity

  • ZHAO Chenggong1,2, LI Yifan2*, MA Manping3, KAN Ankang1*, XIE Huaqing2, YU Wei1,2
Author information +
History +

Abstract

Cite this article

Download Citations
ZHAO Chenggong, LI Yifan, MA Manping, KAN Ankang, XIE Huaqing, YU Wei. Tailoring Polyimide Chain by Melamine-Cyanurate Supramolecule via a Molecular Welding Strategy Achieving Superior Thermal Conductivity[J]. Journal of Thermal Science, 2023, 32(4): 1558-1568 https://doi.org/10.1007/s11630-023-1810-2

References

[1] An, Z., Jia, L., Ding, Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26: 391–412. 
[2] Zeng Z., Zeng L., Wang R., Feng G., Molecular understanding of heat transfer in ionic-liquid-based electric double layers. Journal of Thermal Science, 2023, 32: 192–205.
[3] Yeh L.T., Review of heat transfer technologies in electronic equipment. Journal of Electronic Packaging, 1995, 117(4): 333–339.
[4] Ruan K., Shi X., Guo Y., Gu J., Interfacial thermal resistance in thermally conductive polymer composites: A review. Composites Communications, 2020, 22: 100518.
[5] Zhao, C., Li, Y., Liu, Y., Xie H., Yu W., A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Advanced Composites and Hybrid Materials, 2023, 6: 27.
[6] Zhou Y., Foreword to the focus issue: Composite materials for functional electronic devices. Science and Technology of Advanced Materials, 2022, 23(1): 617–618.
[7] Ma P., Dai C., Wang H., Li Z., Liu H., Li W., Yang C., A review on high temperature resistant polyimide films bearing heterocyclic structures and their applications. Composites Communications, 2019, 16: 84–93.
[8] Sun Q., Xue Z., Chen Y., Xia R., Wang J., Xu S., Zhang J., Yue Y., Modulation of the thermal transport of micro-structured materials from 3D printing. International Journal of Extreme Manufacturing, 2022, 4: 015001.
[9] Gao J., Xie D., Wang X., Zhang X., Yue Y., High thermal conductivity of free-standing skeleton in graphene foam. Applied Physics Letters, 2022, 117: 251901.
[10] Wu H., Gao J., Xiong Y., Zhu Q., Yue Y., Tuning thermal conductance of graphene-polyethylene composites via graphene inclination and curvature. International Journal of Heat and Mass Transfer, 2021, 178: 121634.
[11] Haruki M., Thermal conductivity for polymer composite materials: Recent advances in polyimide materials. Journal of Chemical Engineering of Japan, 2021, 54(5): 186–194.
[12] Duan G., Cao Y., Quan J., Hu Z., Wang Y., Yu J., Zhu J., Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength. Journal of Materials Science, 2020, 55(19): 8170–8184.
[13] Liu D., Ma C., Chi H., Li S., Zhang P., Dai P., Enhancing thermal conductivity of polyimide composite film by electrostatic self-assembly and two-step synergism of Al2O3 microspheres and BN nanosheets. RSC Advances, 2020, 10(69): 42584–42595.
[14] Wang Y., Zhang X., Ding X., Li Y., Zhang P., Shu M., Zhang Q., Gong Y., Zheng K., Wu B., Tian X., Enhanced thermal conductivity of carbon nitride-doped graphene/ polyimide composite film via a “deciduous-like” strategy. Composites Science and Technology, 2021, 205: 108693.
[15] Mehra N., Mu L., Ji T., Yang X., Kong J., Gu J., Zhu J., Thermal transport in polymeric materials and across composite interfaces. Applied Materials Today, 2018, 12: 92–130.
[16] Ruan K., Guo Y., Gu J., Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules, 2021, 54(10): 4934– 4944.
[17] Xiang L., Fang Y., Xu K., Zheng Z., Dong J., Xie Y., Molecular alignment induced high thermal conductivity in amorphous/low crystalline polyimide fibers. International Journal of Heat and Mass Transfer, 2022, 193: 122959.
[18] Mehra N., Jeske M., Yang X., Gu J., Kashfipour M.A., Li Y., Baughman J.A., Zhu J., Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction. ACS Applied Polymer Materials, 2019, 1(6): 1291–1300.
[19] Wang Y., Zhang X., Ding X., Zhang P., Shu M., Zhang Q., Gong Y., Zheng K., Tian X., Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Composites Part B: Engineering, 2020, 199: 108267.
[20] Liu P., Li X., Min P., Chang X., Shu C., Ding Y., Yu Z.Z., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Letters, 2020, 13(1): 22.
[21] Sun J., Xu J., Grafmueller A., Huang X., Liedel C., Algara-Siller G., Willinger M., Yang C., Fu Y., Wang X., Shalom M., Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 2017, 205: 1–10.
[22] Ou X., Chen S., Lu X., Lu Q., Enhancement of thermal conductivity and dimensional stability of polyimide/ boron nitride films through mechanochemistry. Composites Communications, 2021, 23: 100549.
[23] Li Y., Liu K., Xiao R., Preparation and characterization of flame-retarded polyamide 66 with melamine cyanurate by in situ polymerization. Macromolecular Research, 2017, 25(8): 779–785.
[24] Li Y., Mehra N., Ji T., Yang X., Mu L., Gu J., Zhu J., The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale, 2018, 10(4): 1695–1703.
[25] Xiao H., Huang Z.X., Zhang Z.P., Rong M.Z., Zhang M.Q., Highly thermally conductive flexible copper clad laminates based on sea-island structured boron nitride/polyimide composites. Composites Science and Technology, 2021, 109087.
[26] Ding D., Zou M., Wang X., Qin G., Zhang S., Chan S.Y., Meng Q., Liu Z., Zhang Q., Chen Y., Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation. Chemical Engineering Journal, 2022, 437: 135438.
[27] Zhang F., Feng Y., Qin M., Gao L., Li Z., Zhao F., Zhang Z., Lv F., Feng W., Stress controllability in thermal and electrical conductivity of 3D elastic graphene – crosslinked carbon nanotube sponge/polyimide nanocomposite. Advanced Functional Materials, 2019, 29(25): 1901383.
[28] Cao L., Wang J., Dong J., Zhao X., Li H.-B., Zhang Q., Preparation of highly thermally conductive and electrically insulating PI/BNNSs nanocomposites by hot-pressing self-assembled PI/BNNSs microspheres. Composites Part B: Engineering, 2020, 188: 107882.
[29] Li Y., Zhang Y., Liu Y., Xie H., Yu W., A comprehensive review for micro/nanoscale thermal mapping technology based on scanning thermal microscopy. Journal of Thermal Science, 2022, 31(4): 976–1007.
[30] Li Y., Mehra N., Ji T., Zhu J., Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models. Nanoscale Horizons, 2018, 3(5): 505–516.
[31] Liu Z., Feng Y., Qiu L., Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letter, 2022, 120(11): 113506.
[32] Chen W., Feng Y., Qiu L., Zhang X., Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. International Journal of Heat and Mass Transfer, 2020, 154: 119750.
[33] Li Y., Zhang T., Zhang Y., Zhao C., Zheng N., Yu W., A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet. International Communications in Heat and Mass Transfer, 2022, 130: 105764.
[34] Mehra N., Li Y., Zhu J., Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers. The Journal of Physical Chemistry C, 2018, 122(19): 10327–10333. 
[35] Mu L., He J., Li Y., Ji T., Mehra N., Shi Y., Zhu J., The molecular origin of efficient phonon transfer in modulated polymer blends: effect of hydrogen bonding on polymer coil size and assembled microstructure. The Journal of Physical Chemistry C, 2017, 121(26): 14204– 14212.
[36] Mu L., Li Y., Mehra N., Ji T., Zhu J., Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS applied materials & interfaces, 2017, 9(13): 12138–12145.
[37] Mehra N., Mu L., Ji T., Li Y., Zhu J., Moisture driven thermal conduction in polymer and polymer blends. Composites Science and Technology, 2017, 151: 115– 123.
[38] Mehra N., Li Yi., Yang X., Li J., Kashfipour M.A., Gu J., Zhu J., Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Composites Part B: Engineering, 2019, 166: 509–515.
[39] Li Y., Lin H., Mehra N., Identification of thermal barrier areas in graphene oxide/boron nitride membranes by scanning thermal microscopy: thermal conductivity improvement through membrane assembling. ACS Applied Nano Materials, 2021, 4(4): 4189–4198.
[40] Lu X., Qiao X., Yang T., Sun K., Chen X., Preparation and properties of environmental friendly nonhalogen flame retardant melamine cyanurate/nylon 66 composites. Journal of Applied Polymer Science, 2011, 122(3): 1688–1697.
[41] Clingerman M.L., King J.A., Schulz K.H., Meyers J.D., Evaluation of electrical conductivity models for conductive polymer composites. Journal of Applied Polymer Science, 2002, 83: 1341–1356.
[42] Yang G., Xing R., Li Y., Ma C., Cheng B., Yan J., Zhuang X., Toward high-performance multifunctional electronics: Knitted fabric-based composite with electrically conductive anisotropy and self-healing capacity. Chemical Engineering Journal, 2021, 426: 131931.
[43] Joyee E.B., Lu L., Pan Y., Analysis of mechanical behavior of 3D printed heterogeneous particle-polymer composites. Composites Part B, 2019, 173: 106840.

Funding

The authors acknowledge funding from the Shanghai Sailing Program (21YF1414200), Discipline of Shanghai-Materials Science and Engineering, and Shanghai Engineering Research Center of Advanced Thermal Functional Material.

RIGHTS & PERMISSIONS

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023
PDF(19493 KB)

70

Accesses

0

Citation

Detail

Sections
Recommended

/