Thermodynamic Performance and Flammability Studies of Hydrocarbon Based Low Global Warming Potential Refrigerant Mixtures

Nagarjuna KUMMA, S S Harish KRUTHIVENTI

Journal of Thermal Science ›› 2022, Vol. 31 ›› Issue (5) : 1487-1502.

PDF(1120 KB)
PDF(1120 KB)
Journal of Thermal Science ›› 2022, Vol. 31 ›› Issue (5) : 1487-1502. DOI: 10.1007/s11630-022-1642-5  CSTR: 32141.14.JTS-022-1642-5

Thermodynamic Performance and Flammability Studies of Hydrocarbon Based Low Global Warming Potential Refrigerant Mixtures

  • Nagarjuna KUMMA, S S Harish KRUTHIVENTI*
Author information +
History +

Abstract

This paper presents a theoretical method to calculate the minimum inerting concentration (MIC) of binary and ternary blends (refrigerants) that are used in small refrigeration systems. MIC is the concentration of the dilutant which makes the flammable mixture into just non-flammable (at non-zero quenching potential). In this study, the refrigerant safety parameters such as flammability, Global Warming Potential (GWP) and performance (COP) are analyzed for twelve binary and thirteen ternary blends containing one flammable and two nonflammable (dilutant) components. Flammability investigation was carried out with the hydrocarbon refrigerants R290, R600, R600a each mixed with dilutants R227ea, R125, R245fa, R13I1 and R134a at different concentrations respectively. Two methods, thermal balance method (TBM) and modified thermal balanced method (MTBM), are used to estimate the MIC (which decides the flammable zone). Thirteen ternary blends were identified based on the MIC values estimated using MTBM. In the case of ternary blends, it was observed that the non-flammable zone is high for the compositions of the Mixture G, Mixture H and Mixture I. It was also estimated that the COPs of the proposed mixtures M22, M24, M25 and M27 are 4% greater than the COP of R134a (for the same operating conditions). Further, it was also understood that the corresponding GWP value is reduced by 90% to 97% for the mixtures (M21, M22, M24, M25 and M27) when compared to R134a (GWP=1300). Therefore, out of the thirteen proposed ternary mixtures (M15 to M27), the mixtures (M21, M22, M24, M25 and M27) are safe in terms of flammability, GWP and possess reasonable COP which can be a potential alternative refrigerant mixture to R134a in small refrigeration systems.

Key words

hydrocarbons / minimum inerting concentration / ternary / Global Warming Potential

Cite this article

Download Citations
Nagarjuna KUMMA, S S Harish KRUTHIVENTI. Thermodynamic Performance and Flammability Studies of Hydrocarbon Based Low Global Warming Potential Refrigerant Mixtures[J]. Journal of Thermal Science, 2022, 31(5): 1487-1502 https://doi.org/10.1007/s11630-022-1642-5

References

[1] Perkins J., Apparatus for producing ice and cooling fluids. Patent 6662, United Kingdom, 1834.
[2] El-Sayed A.R., El Morsi M., Mahmoud N., A review of the potential replacements of HCFC/HFCs using environment-friendly refrigerants. International Journal of Air-Conditioning and Refrigeration, 2018, 26(03): 1830002. DOI: 10.1142/S2010132518300021.
[3] Emani M.S., Mandal B.K., The use of natural refrigerants in refrigeration and air conditioning systems: a review. In IOP Conference Series: Materials Science and Engineering, 2018, 377(1): 012064. 
[4] Singh S., Hafner A., Banasiak K., Maiya P.M., Neksa P., Experimental evaluation of multi-ejector-based CO2 cooling system for supermarkets in tropical zones. 17th International Refrigeration and Air Conditioning Conference, 2018. 
[5] Dilshad S., Kalair A.R., Khan N., Review of carbon dioxide (CO2) based heating and cooling technologies: Past, present, and future outlook. International Journal of Energy Research, 2020, 44(3): 1408–1463. DOI: 10.1002/er.5024.
[6] Zhao Y., Bin L., Haibo Z., Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Experimental Thermal and Fluid Science, 2004, 28(6): 557–563. DOI: 10.1016/j.expthermflusci.2003.06.005.
[7] Zhao Y., Wu T., Li X.H., Experimental studies and estimates of the explosion limit of some environmentally friendly refrigerants. Combustion Science and Technology, 2005, 177(3): 613–626. DOI: 10.1080/00102200590900507.
[8] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of isobutane and its mixtures with various gases. Journal of Hazardous Materials, 2007, 148(3): 640–647. DOI: 10.1016/j.jhazmat.2007.03.021.
[9] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of five selected compounds each mixed with HFC-125. Fire Safety Journal, 2009, 44(2): 192–197. DOI: 10.1016/j.firesaf.2008.06.001.
[10] Tian G., Li X., Gao Y., Zhang F., Theoretical and experimental study of explosion limits and the inhibition of flammable refrigerants. Journal of Software Engineering and Applications, 2016, 9(10): 501. DOI: 10.4236/jsea.2016.910033.
[11] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Extended Le Chatelier’s formula and nitrogen dilution effect on the flammability limits. Fire Safety Journal, 2006, 41(5): 406–417. DOI: 10.1016/j.firesaf.2006.03.002.
[12] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.
[13] Kondo S., Takizawa K., Takahashi A., Tokuhashi K., Sekiya A., Flammability limits of isobutane and its mixtures with various gases. Journal of Hazardous Materials, 2007, 148(3): 640–647. DOI: 10.1016/j.jhazmat.2007.03.021.
[14] Chen C.C., Liaw H.J., Wang T.C., Lin C.Y., Carbon dioxide dilution effect on flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 163(2–3): 795–803. DOI: 10.1016/j.jhazmat.2008.07.051.
[15] Chen C.C., Liaw H.J., Wang T.C., Lin C.Y., Nitrogen dilution effect on the flammability limits for hydrocarbons. Journal of Hazardous Materials, 2009, 166(2–3): 880–890. DOI: 10.1016/j.jhazmat.2008.11.093.
[16] Li Z., Gong M., Sun E., Wu J., Zhou Y., Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy, 2011, 36(9): 5521– 5524. DOI: 10.1016/j.energy.2011.07.023. 
[17] Zhao F., Mannan M.S., Numerical analysis for nitrogen dilution on flammability limits of hydrocarbon mixtures. Journal of Loss Prevention in the Process Industries, 2016, 43: 600–613. DOI: 10.1016/j.jlp.2016.06.015.
[18] Mendiburu A.Z., de Carvalho Jr J.A., Coronado C.R., Method for determination of flammability limits of gaseous compounds diluted with N2 and CO2 in air. Fuel, 2018, 226: 65–80. DOI: 10.1016/j.fuel.2018.03.181.
[19] Sattar M.A., Rahman S., Haji H.M., Performance investigation of domestic refrigerator using pure hydrocarbons and blends of hydrocarbons as refrigerants. 2007, pp. 223–228. Website: http://eprints.um.edu.my/id/eprint/6876.
[20] Mohanraj M., Jayaraj S., Muraleedharan C., Chandrasekar P., Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator. International Journal of Thermal Sciences, 2009, 48(5): 1036–1042. DOI: 10.1016/j.ijthermalsci.2008.08.001.
[21] Dalkilic A.S., Wongwises S., A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. International Communications in Heat and Mass Transfer, 2010, 37(9): 1340–1349. DOI: 10.1016/j.icheatmasstransfer.2010.07.006.
[22] Yoon W.J., Seo K., Chung H.J., Kim Y., Performance optimization of dual-loop cycles using R-600a and hydrocarbon mixtures designed for a domestic refrigerator-freezer. International Journal of Refrigeration, 2012, 35(6): 1657–1667. DOI: 10.1016/j.ijrefrig.2012.04.019.
[23] Rasti M., Aghamiri S., Hatamipour M.S., Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a. International Journal of Thermal Sciences, 2013, 74: 86–94. DOI: 10.1016/j.ijthermalsci.2013.07.009.
[24] Saravanakumar R., Selladurai V., Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 933–940.
[25] Yan G., Cui C., Yu J., Energy and exergy analysis of zeotropic mixture R290/R600a vapor-compression refrigeration cycle with separation condensation. International Journal of Refrigeration, 2015, 53: 155–162. DOI: 10.1016/j.ijrefrig.2015.01.007.
[26] Banjo S.O., Bolaji B.O., Osagie I., Fayomi O.S.I., Fakehinde O.B., Olayiwola P.S., Udoye N.E., Experimental analysis of the performance characteristic of an eco-friendly HC600a as a retrofitting refrigerant in a thermal system. Journal of Physics: Conference Series, 2019, 1378(4): 042033.
[27] Ma T., A thermal theory for estimating the flammability limits of a mixture. Fire Safety Journal, 2011, 46(8): 558–567. DOI: 10.1016/j.firesaf.2011.09.002.
[28] Ma T., Using critical flame temperature for estimating lower flammable limits of a mixture. Process Safety Progress, 2013, 32(4): 387–392. DOI: 10.1002/prs.11603.
[29] Ma T., Larrañaga M., Theoretical flammability diagram for analyzing mine gases. Fire Technology, 2015, 51(2): 271–286.
[30] Kumma N., Moideen A., Kaushik P., Kruthiventi S.H., Modified thermal balance method for estimating minimum inerting concentraion of flammable refrigerant mixtures. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2201–2210.
[31] Kumma N., Kruthiventi S.S.H., Flammability and performance studies of eco-friendly ternary refrigerant mixtures used in vapour compression systems. Environmental Science and Pollution Research, 2022, pp. 1–17. DOI: 10.1007/s11356-022-19363-z.
[32] Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O., NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0. National Institute of Standards and Technology. Standard Reference Data Program, Gaithersburg, 2018.
[33] Harish Kruthiventi S.S., Venkatarathnam G., Comparison of the straight adiabatic capillary tube expansion devices used in refrigeration systems operating with refrigerants R134a and R1234yf. Journal of Thermal Science and Engineering Applications, 2016. DOI: 10.1115/1.4032366.
[34] Zhang L., Yang C., Liu H., Du P., Gao H., Theoretical investigation on the properties of R744/R290 mixtures. Procedia Engineering, 2017, 205: 1620–1626. DOI: 10.1016/j.proeng.2017.10.304.
[35] Ural E.A., Flammability potential of halogenated fire suppression agents and refrigerants. Process Safety Progress, 2003, 22(1): 65–73. DOI: 10.1002/prs.680220109.
[36] Choudhari C.S., Sapali S.N., Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia, 2017, 109: 346–352. DOI: 10.1016/j.egypro.2017.03.084.
[37] Granryd E., Hydrocarbons as refrigerants—an overview. International Journal of Refrigeration, 2001, 24(1): 15–24. DOI: 10.1016/j.ijrefrig.2006.03.003.
[38] Dubey A.M., Kumar S., Agrawal G.D., Numerical optimization of a transcritical CO2/propylene cascaded refrigeration-heat pump system with economizer in HT cycle. Sadhana, 2015, 40(2): 437–454.
[39] Ghanbarpour M., Mota-Babiloni A., Badran B.E., Khodabandeh R., Theoretical global warming impact evaluation of medium and high temperature heat pumps using low GWP refrigerants. Applied Sciences, 2021, 11(15): 7123. DOI: 10.3390/app11157123.
[40] Direk M., Mert M.S., Soylu E., Yuksel F., Experimental investigation of an automotive air conditioning system using R444A and R152a refrigerants as alternatives of R134a. Strojniski Vestnik-Journal of Mechanical Engineering, 2019, 65(4): 212–219.
[41] Geete A., Sharma M., Shrimali P., Entropy generation and exergy destruction analyses for vapour compression refrigeration system with various refrigerants. SN Applied Sciences, 2019, 1(7): 1–12. DOI: 10.1007/s42452-019-0798-4.
[42] Geete A., Khandwawala A.I., Thermodynamic analysis for vapour compression refrigeration system by considering internal irreversibility with the help of designed computer software. i-Manager’s Journal on Mechanical Engineering, 2015, 5(2): 22. DOI: 10.26634/jme.5.2.3250. 

RIGHTS & PERMISSIONS

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022
PDF(1120 KB)

45

Accesses

0

Citation

Detail

Sections
Recommended

/