Founded in 1992, JOURNAL OF THERMAL SCIENCE, an international multi-disciplinary journal of energy and power sciences in English language sponsored by the Institute of Engineering Thermophysics, Chinese Academy of Sciences, publishes high quality papers of original work on experimental, numerical and theoretical investigations related to the development, advancement, and improved understanding of energy, power and environment sciences.

Read More

Principal Editors

View full Editorial Board
28 February 2025, Volume 34 Issue 2
  
  • Select all
    |
  • JI Zhishi, ZHANG Hanqing, WANG Pei
    Abstract ( ) Download PDF ( )   Knowledge map   Save
    To achieve low-carbon economic operation of hydrogen-doped integrated energy systems while mitigating the stochastic impact of new energy outputs on the system, the coordinated operation mode of hydrogen-doped gas turbines and electrolyzers is focused on, as well as a hybrid energy storage scheme involving both hydrogen and heat storage and an optimized scheduling model for integrated energy systems encompassing electricity-hydrogen-heat-cooling conversions is established. A model predictive control strategy based on deep learning prediction and feedback is proposed, and the effectiveness and superiority of the proposed strategy are demonstrated using error penalty coefficients. Moreover, the introduction of hydrogen energy exchange and ladder carbon trading is shown to effectively guide the low-carbon economic operation of hydrogen-doped integrated energy systems across multiple typical scenarios. A sensitivity analysis is conducted based on this framework, revealing that increases in the hydrogen doping ratio of turbines and the carbon base price led to higher system operation costs but effectively reduce carbon emissions.
  • WANG Tianze, XU Jinliang, ZHENG Haonan, QI Jianhui
    Abstract ( ) Download PDF ( )   Knowledge map   Save
    The supercritical carbon dioxide (sCO2) cycle can be powered by traditional as well as clean energy. To help users obtain more accurate results than the literatures with pre-set compressor efficiency, we proposed a complete model to establish a link between the performance, sizes of compressors and parameters such as power WC, inlet temperature Tin, inlet pressure Pin and pressure ratio ɛ. Characteristic sizes of compressors lc, profile loss Yp and clearance loss Ycl are all proportional to powers of WC with powers of 0.5, –0.075 and –0.5 to 0 respectively; the scaling laws are constant in the range of capacities from 20 MW to 200 MW. The compressor isentropic efficiency ηtt grows as the WC increases, and the curves become gentle. Compressor efficiency improves over the full power range when the speed is changed from standard speed to the optimal speed; the ηtt curves turn soft as the n increase. As the Pin and Tin approach the critical point, the ηtt increase. Compressor efficiency follows a parabolic curve as the ɛ increases, this parabolic distribution results from the tradeoff between the change in losses and the pressure distribution of blades. The ηtt versus Pin, Tin and ɛ relations are similar at various capacities because of insignificant changes in the distribution of losses. Compressor efficiency maps facilitate the estimation of system performance, while scaling law for irreversible losses and characteristic lengths, along with constant criterion analyses, aid in comprehending the characteristics of compressors across various capacities.
  • YUAN Shaoke, LI Peijing, JIAO Fan, LI Yimin, QIN Yuanlong, HAN Dongjiang, LIU Qibin
    Abstract ( ) Download PDF ( )   Knowledge map   Save
    With a broad range of application prospects, hydrogen fuel cell technology is regarded as a clean and efficient energy conversion technology. Nevertheless, challenges exist in terms of the safe storage and transportation of hydrogen. One proposed solution to this problem is the utilization of methanol on-line steam reforming technology for hydrogen production. In this paper, an integrated system for in-situ steam reforming of fuel coupled with proton exchange membrane fuel cells (PEMFC) power generation is proposed, and sensitivity analysis and exergy sensitivity analysis are conducted. Through the gradual utilization of waste heat and the integration of the system, fuel consumption is reduced and the power generation efficiency of the system is improved. Under the design operating conditions, the power generation efficiency and exergy efficiency of the system are achieved at 44.59% and 39.70%, respectively. This study presents a proven method for the efficient integration of fuel thermochemical conversion for hydrogen production with fuel cells for power generation, highlighting the advantages of complementary utilization of methanol steam reforming and PEMFC.
  • FU Shen, TANG Xin, LIU Penghui, LI Guiqiang
    Abstract ( ) Download PDF ( )   Knowledge map   Save
    Thermally regenerative electrochemical cycle (TREC) is a novel and effective heat-to-electricity technology for harvesting low-grade heat. Currently, reported TREC analyses have been based on the Stirling cycle of ideal infinite heat source and infinite time for heat transfer. However, this will lead to inaccuracy when the scenario deviates from the ideal case. In this study, a systematic thermodynamic analysis on TREC is performed to address this problem. Based on different heat transfer situations, the description of thermodynamic processes and the corresponding mathematical models are established. At the same time, the TREC system, with the solar collector as the high-temperature heat source and the environment as the low-temperature heat source, is employed as a case. And the study delved into discrepancies arising from incongruences between the practical operational process and the traditional ideal analytical methodologies, along with an investigation of the different thermal environment impact on system performance. The findings suggest that the finite analysis method should be used when the actual operating time of the system is shorter than the desired equilibrium period. On the contrary, the use of the infinite analysis method, in this case, produces an error, the magnitude of which is directly related to the operating time, whereas when the time reaches 80% of the equilibrium time the error can be controlled to less than 2%. The influence of the heat source on the operating phase of the system is mainly in the temperature equilibrium and the rate of temperature equilibrium. This effect is proportional to the thermal capacitance and is also positively related to the system performance. Therefore, to improve system performance, it is recommended that a high-temperature heat source with a high ratio of thermal capacitance to system thermal capacitance should be selected and that the response time should slightly exceed the system equilibrium duration.
  • LIU Xiaomin, WU Qingbai, LI Jinping, Vojislav NOVAKOVIC
    Abstract ( ) Download PDF ( )   Knowledge map   Save
    The exploitation of photovoltaic/thermal (PV/T) systems, which facilitate concurrent conversion of solar radiation into electrical and heat energies, presents substantial potential in the solar-abundant northwestern zone of China. This investigation endeavors to evaluate the efficacy of a micro heat pipe (M-HP) PV/T system via exhaustive experimental analysis conducted in Lanzhou. To improve the performance of M-HP-PV/T system, a comparison was made between the optimal angles for each day and the entire year. The system inside greenhouse exhibited an average photovoltaic conversion efficiency (PCE) and thermal conversion efficiency (TCE) of 12.32% and 42.81%. The system of external environment registered average PCE and TCE values of 12.99% and 21.08%. To further understand the system’s operational results, a mathematical model was constructed through the integration of experimental data, exhibiting good agreement between the simulated outcomes and empirical observations. The average solar irradiance of daily optimum angle was 728.3 W/m2; the annual optimum angle was 29° with an average solar irradiance of 705.6 W/m2. The average annual total powers at the optimal angle outside the greenhouse and inside the greenhouse were 448.0 W and 398.7 W. The average annual total efficiencies at the optimal angle outside the greenhouse and inside the greenhouse were 40.8% and 56.9%. The total power in the greenhouse was lower by 49.3 W, while total efficiency in the greenhouse was higher by 16.1%.

Calls for Papers

Article Collections

Links

ISSN: 1003-2169

CN:11-2853/O4

Journal of Thermal Science