Tunable Thermal Rectification and Negative Differential Thermal Resistance in Gas-Filled Nanostructure with Mechanically-Controllable Nanopillars

  • LI Fan ,
  • LI Haiyang ,
  • WANG Jun ,
  • XIA Guodong ,
  • HWANG Gisuk
展开
  • 1. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
    2. Department of Mechanical Engineering, Wichita State University, Wichita KS 67260, USA

网络出版日期: 2023-12-01

基金资助

This work is supported by the National Natural Science Foundation of China (grants Nos. 51976002 and 51776007), Beijing Nova Program of Science and Technology (No. Z191100001119033), and the Young Talent Project of Beijing Municipal Education Committee (No. CIT&TCD201904015). The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Tunable Thermal Rectification and Negative Differential Thermal Resistance in Gas-Filled Nanostructure with Mechanically-Controllable Nanopillars

  • LI Fan ,
  • LI Haiyang ,
  • WANG Jun ,
  • XIA Guodong ,
  • HWANG Gisuk
Expand
  • 1. MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China
    2. Department of Mechanical Engineering, Wichita State University, Wichita KS 67260, USA

Online published: 2023-12-01

Supported by

This work is supported by the National Natural Science Foundation of China (grants Nos. 51976002 and 51776007), Beijing Nova Program of Science and Technology (No. Z191100001119033), and the Young Talent Project of Beijing Municipal Education Committee (No. CIT&TCD201904015). The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

本文构建了固-流-固受限纳米空间系统,实现可调控的热整流及负微分热阻效应。系统一端固体为平壁,另一端为活动型肋状纳米结构,可以同时实现热整流效应和负微分热阻效应。非平衡态分子动力学模拟计算结果表明,随着肋状纳米结构逐渐被推入到受限空间内,通道内纳米结构肋高增大,冷端壁面处的自由能势垒差逐渐降低,对流体分子的吸附作用变强,热整流效应和负微分热阻效应也会随之增强。最大热整流效率可达到340%,同时能够实现负微分热阻效应的温差范围显著扩大。本文提出的可调控热整流和负微分热阻效应为热管理系统的设计提供了新思路。

本文引用格式

LI Fan , LI Haiyang , WANG Jun , XIA Guodong , HWANG Gisuk . Tunable Thermal Rectification and Negative Differential Thermal Resistance in Gas-Filled Nanostructure with Mechanically-Controllable Nanopillars[J]. 热科学学报, 2022 , 31(4) : 1084 -1093 . DOI: 10.1007/s11630-022-1630-9

Abstract

In this study, by using the nonequilibrium molecular dynamics and the kinetic theory, we examine the tailored nanoscale thermal transport via a gas-filled nanogap structure with mechanically-controllable nanopillars in one surface only, i.e., changing nanopillar height. It is found that both the thermal rectification and negative differential thermal resistance (NDTR) effects can be substantially enhanced by controlling the nanopillar height. The maximum thermal rectification ratio can reach 340% and the T range with NDTR can be significantly enlarged, which can be attributed to the tailored asymmetric thermal resistance via controlled adsorption in height-changing nanopillars, especially at a large temperature difference. These tunable thermal rectification and NDTR mechanisms provide insights for the design of thermal management systems.

参考文献

[1] Ganatra Y., Ruiz J., Howarter J.A., et al., Experimental investigation of phase change materials for thermal management of handheld devices. International Journal of Thermal Sciences, 2018, 129: 358–364.
[2] Duan Z., Liu D., Zhang G., et al., Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9(9): 3133–3139. 
[3] Behnia S., Panahinia R., Molecular thermal transistor: Dimension analysis and mechanism. Chemical Physics, 2018, 505: 40–46.
[4] Jiang S., Zhang G., Xia D., et al., A heat flux modulator from carbon nanotubes. Nanoscale, 2015, 7(32): 13759– 13764.
[5] Avanessian T., Hwang G., Thermal switch using controlled capillary transition in heterogeneous nanostructures. International Journal of Heat and Mass Transfer, 2018, 121: 127–136.
[6] Utaka Y., Hu K., Chen Z., et al., Application of simple and effective thermal switch for solid-state magnetic refrigeration at room temperature. Applied Thermal Engineering, 2019, 155: 196–205.
[7] Wang L., Li B., Thermal memory: a storage of phononic information. Physical Review Letters, 2008, 101(26): 267203.
[8] Tso C., Chao C.Y., Solid-state thermal diode with shape memory alloys. International Journal of Heat and Mass Transfer, 2016, 93: 605–611.
[9] An Z., Jia L., Ding Y., et al., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26(5): 391–412.
[10] Chen Z., Wong C., Lubner S., et al., A photon thermal diode. Nature Communications, 2014, 5: 5446.
[11] Zhang P., Yuan P., Jiang X., et al., A theoretical review on interfacial thermal transport at the nanoscale. Small, 2018, 14(2): 1702769.
[12] Balachandran V., Clark S.R., Goold J., et al., Energy current rectification and mobility edges. Physical Review Letters, 2019, 123(2): 020603.
[13] Fallahi A., Guldentops G., Tao M., et al., Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering, 2017, 127: 1427–1441.
[14] Wong M.Y., Traipattanakul B., Tso C.Y., et al., Experimental and theoretical study of a water-vapor chamber thermal diode. International Journal of Heat and Mass Transfer, 2019, 138: 173–183.
[15] He D., Buyukdagli S., Hu B., Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices. Physical Review B Condensed Matter, 2009, 80(10): 104302.
[16] Duan Z., Liu D., Zhang G., et al., Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9(9): 3133–3139.
[17] Gaddam P.R., Huxtable S.T., Ducker W.A., A liquid-state thermal diode. International Journal of Heat and Mass Transfer, 2017, 106: 741–744.
[18] Chen X.K., Liu J., Peng Z.H., et al., A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures. Applied Physics Letters, 2017, 110(9): 091907.
[19] Chen X.K., Xie Z.X., Zhou W.X., et al., Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon, 2016, 100: 492–500.
[20] Wehmeyer G., Yabuki T., Monachon C., et al., Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Applied Physics Reviews, 2017, 4(4): 041304.
[21] Li B., Wang L., Casati G., Thermal diode: Rectification of heat flux. Physical Review Letters, 2004, 93(18): 184301.
[22] Chang C. W., Okawa D., Majumdar A., et al., Solid-state thermal rectifier. Science, 2006, 314(5802): 1121–1124.
[23] Tian H., Xie D., Yang Y., et al., A novel solid-state thermal rectifier based on reduced graphene oxide. Scientific Reports, 2012, 2(1): 1–7.
[24] Ma D., Wan X., Yang, N., Unexpected thermal conductivity enhancement in pillared graphene nanoribbon with isotopic resonance. Physical Review B, 2018, 98(24): 245420.
[25] Ma D., Zhang L., Enhancement of interface thermal conductance between Cr-Ni alloy and dielectric via Cu nano-interlayer. Journal of Physics: Condensed Matter, 2020, 32(42): 425001.
[26] Giri A., Hopkins P.E., Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study. Applied Physics Letters, 2014, 105(3): 033106.
[27] Feng Y., Liang X., Heat transfer characteristics in an asymmetrical solid-liquid system by molecular dynamics simulations. International Journal of Thermophysics, 2015, 36(7): 1519–1529.
[28] Traipattanakul B., Tso C.Y., Chao C.Y., A phase-change thermal diode using electrostatic-induced coalescing- jumping droplets. International Journal of Heat and Mass Transfer, 2019, 135: 294–304.
[29] Hu M., Goicochea J.V., Michel B., et al., Thermal rectification at water/functionalized silica interfaces. Applied Physics Letters, 2009, 95(15): 151903.
[30] Murad S., Puri I.K., Thermal rectification in a fluid reservoir. Applied Physics Letters, 2012, 100(12): 121901.
[31] Murad S., Puri I.K., Dynamic rectification in a thermal diode based on fluid-solid interfaces: Contrasting behavior of soft materials and fluids. Applied Physics Letters, 2014, 104(21): 211601.
[32] Avanessian T., Hwang G., Thermal diode in gas-filled nanogap with heterogeneous surfaces using nonequilibrium molecular dynamics simulation. Journal of Applied Physics, 2016, 120(16): 165306.
[33] Avanessian T., Hwang G., Thermal diode using controlled capillary in heterogeneous nanopores. International Journal of Heat and Mass Transfer, 2018, 124: 201–209.
[34] Ming Y., Li H.M., Ding Z.J., Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling. Physical Review E, 2016, 93(3): 032127.
[35] Ai B.Q., Zhong W.R., Hu B., Double negative differential thermal resistance induced by nonlinear on-site potentials. Physical Review E, 2011, 83(5): 052102.
[36] Mendonça M.S., Pereira E., Effective approach for anharmonic chains of oscillators: Analytical description of negative differential thermal resistance. Physics Letters A, 2015, 379(36): 1983–1989.
[37] Ren J., Zhu J.X., Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces. Physical Review B, 2013, 87(24): 241412.
[38] Ai B.Q., An M., Zhong W.R., Nonlinear thermal conductance in single-wall carbon nanotubes: Negative differential thermal resistance. The Journal of Chemical Physics, 2013, 138(3): 034708.
[39] Li F., Wang J., Xia G., et al., Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures. Nanoscale, 2019, 11(27): 13051–13057.
[40] Li F., Wang J., Xia G., Enhanced effect of negative differential thermal resistance in nanoscale confined structure with nanopatterned surfaces. The Journal of Physical Chemistry C, 2020, 124(1): 92–98.
[41] Li Z., Surface effects on friction-induced fluid heating in nanochannel flows. Physical Review E, 2009, 79(2): 026312.
[42] Liu C., Fan H.B., Zhang K., et al., Flow dependence of interfacial thermal resistance in nanochannels. The Journal of Chemical Physics, 2010, 132(9): 094703.
[43] Corry B., Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry B, 2008, 112(5): 1427–1434.
[44] Kim B.H., Beskok A., Cagin T., Molecular dynamics simulations of thermal resistance at the liquid-solid interface. Journal of Chemical Physics, 2008, 129(17): 551.
[45] Ohara T., Contribution of intermolecular energy transfer to heat conduction in a simple liquid. The Journal of Chemical Physics, 1999, 111(21): 9667–9672.
[46] Fujiwara K., Shibahara M., Detection of heat flux at single-atom scale in a liquid-solid interfacial region based on classical molecular dynamics. Applied Physics Letters, 2019, 114(1): 011601.
[47] Tien C.L., Lienhard J.H., Statistical thermodynamics. Hemisphere, Washington, 1979.
[48] Chen X., Kinetic theory of gases and its application to the studies of heat transfer and fluid flow, Tsinghua University Press, China, 1996.
[49] Kaviany M., Heat transfer physics, Cambridge University Press, Cambridge, 2014.
[50] Blömer J., Beylich A.E., Molecular dynamics simulation of energy accommodation of internal and translational degrees of freedom at gas-surface interfaces. Surface Science, 1999, 423(1): 127–133.
[51] Hwang G.S., Kaviany M., Molecular dynamics simulation of effective thermal conductivity of vapor-filled nanogap and nanocavity. Journal of Applied Physics, 2009, 106(2): 024317.
文章导航

/