Tunable Anisotropic Lattice Thermal Conductivity in One-Dimensional Superlattices from Molecular Dynamics Simulations#br#

  • WANG Xiuqi ,
  • AN Meng ,
  • MA Weigang ,
  • ZHANG Xing
展开
  • 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
    2. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

网络出版日期: 2023-12-01

基金资助

The project was supported by the National Natural Science Foundation of China (Nos. 52176078, 52006130, and 51827807), and China Postdoctoral Science Foundation (Nos. 2020M670321 and 2021T140359).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Tunable Anisotropic Lattice Thermal Conductivity in One-Dimensional Superlattices from Molecular Dynamics Simulations#br#

  • WANG Xiuqi ,
  • AN Meng ,
  • MA Weigang ,
  • ZHANG Xing
Expand
  • 1. Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
    2. College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China

Online published: 2023-12-01

Supported by

The project was supported by the National Natural Science Foundation of China (Nos. 52176078, 52006130, and 51827807), and China Postdoctoral Science Foundation (Nos. 2020M670321 and 2021T140359).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

纳米尺度超晶格结构为高性能热电材料和热管理材料开发提供了可能途径,尤其是各向异性导热特性是设计定向散热器件的关键。本文采用非平衡态分子动力学模拟方法研究了一维超晶格结构的热导率各向异性。研究结果表明,一维超晶格结构的周期长度可有效调控其面向和法向晶格热导率。随着超晶格周期长度增加,面向热导率先增大后趋于收敛,法向热导率逐步增加,从而引起热导率各向异性产生非单调变化。基于界面热阻、声子态密度和声子频谱透射系数结果揭示了一维超晶格中声子输运的微观机制。

本文引用格式

WANG Xiuqi , AN Meng , MA Weigang , ZHANG Xing . Tunable Anisotropic Lattice Thermal Conductivity in One-Dimensional Superlattices from Molecular Dynamics Simulations#br#[J]. 热科学学报, 2022 , 31(4) : 1068 -1075 . DOI: 10.1007/s11630-022-1661-2

Abstract

Engineering nanostructured superlattices provides an effective solution toward the realization of high-performance thermoelectric device and thermal management materials, where the anisotropic thermal conductivity is critical for designing orientation-dependent thermal devices. Herein, the lattice thermal conductivity anisotropy of Al/Ag superlattices as one typical example of superlattice materials is investigated utilizing non-equilibrium molecular dynamics simulations. The cross-plane and in-plane lattice thermal conductivities of one-dimensional superlattices are in the ranges of 0.5–3.2 W/(m·K) and 1.8–5.1 W/(m·K) at different period lengths, respectively, both of which are smaller than those of bulk materials. More specifically, the cross-plane lattice thermal conductivity of superlattices increases with the period length, while the in-plane phonon thermal conductivity first increases and then trends to convergence, resulting in the non-monotonic thermal anisotropy value. To further reveal the microscopic phonon transport mechanism, the interfacial phonon thermal resistance, density of states and spectral phonon transmission coefficient including anharmonic phonon properties under different period lengths are calculated. Our results can be helpful for understanding phonon transport in low-dimensional materials and provide guidance for optimizing the thermal conductivity anisotropy of superlattice materials in the application ranging from thermoelectric devices to thermal management in micro/nano systems.

参考文献

[1] Bell L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321: 1457–1461.
[2] Zebarjadi M., Heat management in thermoelectric power generators. Scientific Reports, 2016, 6: 20951.
[3] Hao S., Dravid V.P., Kanatzidis M.G., Wolverton C., Computational strategies for design and discovery of nanostructured thermoelectrics. NPJ Computational Materials, 2019, 5(1): 58.
[4] Semenov N.N., Boudart M., Wise H., Some problems in chemical kinetics and reactivity. Physics Today, 1959, 12(5): 44.
[5] Vineis C.J., Shakouri A., Majumdar A., Kanatzidis M.G., Nanostructured thermoelectrics: big efficiency gains from small features. Advanced Materials, 2010, 22(36): 3970–3980.
[6] Sootsman J.R., Chung D.Y., Kanatzidis M.G., New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2009, 48(46): 8616–8639.
[7] Kanatzidis M.G., Nanostructured thermoelectrics: The new paradigm? Chemistry of Materials, 2010, 22(3): 648–659.
[8] Li L., Chen Z., Zhou M., Huang R., Developments in semiconductor thermoelectric materials. Frontiers in Energy, 2011, 5(2): 125–136.
[9] Yang X., Guo Y., Han Y., Li Y., Ma T., Chen M., Kong J., Zhu J., Gu J., Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Composites Part B: Engineering, 2019, 175: 107070.
[10] Tang L., He M., Na X., Guan X., Zhang R., Zhang J., Gu J., Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Composites Communications, 2019, 16: 5–10.
[11] Doan V.C., Vu M.C., Thieu N.A.T., Islam M.A., Park P.J., Kim S.R., Copper flake-coated cellulose scaffold to construct segregated network for enhancing thermal conductivity of epoxy composites. Composites Part B: Engineering, 2019, 165: 772–778.
[12] Termentzidis K., Merabia, S., Chantrenne P., Keblinski P., Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics. International Journal of Heat and Mass Transfer, 2011, 54(9–10): 2014–2020.
[13] Yang X., Guo Y., Luo X., Zheng N., Ma T., Tan J., Li C., Zhang Q., Gu J., Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Composites Science and Technology, 2018, 164: 59–64.
[14] Renteria J.D., Ramirez S., Malekpour H., Alonso B., Centeno A., Zurutuza A., Cocemasov A.I., Nika D.L., Balandin A.A., Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Advanced Functional Materials, 2015, 25(29): 4664–4672.
[15] Li T., Song J., Zhao X., Yang Z., Pastel G., Xu S., Jia C., Dai J., Chen C., Gong A., Jiang F., Yao Y., Fan T., Yang B., Wagberg L., Yang R., Hu L., Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4: eaar3724.
[16] Volz S., Saulnier J.B., Chen G., Beauchamp P., Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques. Microelectronics Journal, 2000, 31: 815–819.
[17] Garg J., Chen G., Minimum thermal conductivity in superlattices: A first-principles formalism. Physical Review B, 2013, 87(14): 140302.
[18] Zhang C.W., Zhou H., Zeng Y., Zheng L., Zhan Y.L., Bi K.D., A reduction of thermal conductivity of non-periodic Si/Ge superlattice nanowire: Molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2019, 132: 681–688.
[19] Wang Z., A molecular dynamics study of the thermal transport in silicon/germanium nanostructures: From cross-plane to in-plane. Materials Today Communications, 2020, 22: 100822.
[20] Anufriev R., Tachikawa S., Gluchko S., Nakayama Y., Kawamura T., Jalabert L., Nomura M., Cross-plane thermal conductivity in amorphous Si/SiO2 superlattices. Applied Physics Letters, 2020, 117(9): 093103.
[21] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1993, 117: 1–19.
[22] Wang X., An M., Zou J., Ma W., Zhang X., Large-scale preparation of thermal anisotropic macroscopic layered metallic materials by a mechanical rolling method. International Journal of Heat and Mass Transfer, 2021, 171: 121059.
[23] Hu M., Keblinski P., Schelling P.K., Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations. Physical Review B, 2009, 79(10): 104305.
[24] Yao T., Thermal properties of AlAs/GaAs superlattices. Applied Physics Letters, 1987, 51(22): 1798–1800.
[25] Chen G., Tien C.L., Wu X., Smith J.S., Thermal diffusivity measurement of gaas/algaas thin-film structures. Journal of Heat Transfer, 1994, 116(2): 325–331.
[26] Capinski W.S., Maris H.J., Thermal conductivity of GaAs/AlAs superlattices. Physica B, 1996, 219: 699–701.
[27] Duan X., Li Y., Zhang R., Shi T., An L., Huang Q., Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation. AIP Advances, 2013, 3(6): 062128.
[28] Chen G., Zhou S.Q., Yao D.Y., Kim C.J., Zheng X.Y., Liu Z.L., Wang K.L., Heat conduction in alloy-based superlattices. XVII International Conference on Thermoelectrics IEEE, 1998.
[29] Chen G., Neagu M., Thermal conductivity and heat transfer in superlattices. Applied Physics Letters, 1997, 71(19): 2761–2763.
[30] Ren S.Y., Dow J.D., Thermal conductivity of superlattices. Physical Review B, 1982, 25(6): 3750– 3755.
[31] Tong Z., Bao H., Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations. International Journal of Heat and Mass Transfer, 2018, 117: 972–977.
[32] Qian X., Zhou J., Chen G., Phonon-engineered extreme thermal conductivity materials. Nature Materials 2021, 20: 1188–1202.
[33] Hu S., Zhang Z., Jiang P., Ren W., Yu C., Shiomi J., Chen J., Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale 2019, 11: 11839–11846.
[34] Yang J., Chen Y., Yan J., Molecular dynamics simulation of thermal conductivities of superlattice nanowires. Science in China, 2003, 46(3): 278–286.
[35] Yousefi F., Khoeini F., Rajabpour A., Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach. Nanotechnology, 2020, 31(28): 285707.
[36] Zhan H., Zhang G., Zhuang X., Timon R., Gu Y., Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads. Carbon, 2020, 165: 216–224.
[37] Chen G., Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. Journal of Heat Transfer, 1997, 119(2): 220–229.
[38] Liang X., Shi B., Two-dimensional molecular dynamics simulation of the thermal conductance of superlattices. Materials Science & Engineering A, 2000, 292(2): 198–202.
[39] Narayanamurti V., Störmer H.L., Chin M.A., Gossard A.C., Wiegmann W., Selective transmission of high-frequency phonons by a superlattice: The “Dielectric” Phonon Filter. Physical Review Letters, 1979, 43(27): 2012–2016.
[40] Hyldgaard P., Mahan G.D., Phonon superlattice transport. Physical Review B, 1997, 56(17): 10754–10757.
文章导航

/