Thermal Transport across Polyethylene Chains

  • YANG Cong ,
  • DUAN Xuhui ,
  • ZHOU Jun ,
  • LIU Jun ,
  • LI Xiaobo
展开
  • 1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, USA
    3. NNU-SULI Thermal Energy Research Center & Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China

网络出版日期: 2023-12-01

基金资助

The authors would like to acknowledge the support from National Natural Science Foundation of China (NSFC) (Grant No. 51776080).

版权

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Thermal Transport across Polyethylene Chains

  • YANG Cong ,
  • DUAN Xuhui ,
  • ZHOU Jun ,
  • LIU Jun ,
  • LI Xiaobo
Expand
  • 1. School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, USA
    3. NNU-SULI Thermal Energy Research Center & Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China

Online published: 2023-12-01

Supported by

The authors would like to acknowledge the support from National Natural Science Foundation of China (NSFC) (Grant No. 51776080).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

摘要

高分子材料中,热可以沿着分子链方向高效的传递,但是高分子链都具有有限的长度,因此这些热量最终都会跨过链-链边界传递,而链间热输运的效率通常比较低。该论文通过分子动力学模拟研究了聚乙烯链间的热输运,文章中研究了具有不同长度的高分子链(75 nm, 150 nm和251 nm)相互重叠后的链-链间热输运。研究的结果显示随着两条聚乙烯链重叠长度的变化,总的热导呈现出先增大后减小的变化趋势,其原因是随着重叠长度增加链-链间热阻减小,但沿着链方向的热阻增加。文中通过分析构建了链-链热输运的简化热阻模型,模型显示总的链-链热阻可以分解成两部分,一部分为链长热阻,另一部分是与链-链界面热阻相关的耦合项,耦合项的系数和链长热阻与链间热阻的比值相关。由于耦合系数的变化,基于链-链界面的耦合热阻不会随着链-链重叠长度增加一直减小,而是趋于一定值。

本文引用格式

YANG Cong , DUAN Xuhui , ZHOU Jun , LIU Jun , LI Xiaobo . Thermal Transport across Polyethylene Chains[J]. 热科学学报, 2022 , 31(4) : 1061 -1067 . DOI: 10.1007/s11630-022-1640-7

Abstract

In polymers, heat could transfer efficiently along the long polymer chains; however due to the finite length of polymer chains, such heat eventually has to pass across the chain-chain boundary which is less effective in heat transfer. This paper investigated the thermal transport across polyethylene chains with molecular dynamics (MD) simulations. Thermal transport across two polymer chains overlapping with each other is studied with different chain length (75 nm, 150 nm and 251 nm) and chain-chain overlapping length. The results show that with increasing overlapping length, the total thermal conductance across the two chains exhibits maximum value, which is due to the increasing thermal resistance along the chains and the decreasing inter-chain thermal boundary resistance. Mathematically, we show that the total thermal resistance can be decomposed into two terms. The coupling term related to the inter-chain thermal resistance tends to saturate even with long overlapping length.

参考文献

[1] Kanamoto T., Tsuruta A., Tanaka K., Takeda M., Porter R.S., Super-drawing of ultrahigh molecular weight polyethylene. 1. Effect of techniques on drawing of single crystal mats. Macromolecules, 1988, 21(2): 470–477.
[2] Mergenthaler D.B., Pietralla M., Roy S., Kilian H.G., Thermal conductivity in ultraoriented polyethylene. Macromolecules, 1992, 25(13): 3500–3502.
[3] Fujishiro H., Ikebe M., Kashima T., Yamanaka A., Thermal conductivity and diffusivity of high-strength polymer fibers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36(9A): 5633–5637.
[4] Choy C.L., Wong Y.W., Yang G.W., Kanamoto T., Elastic modulus and thermal conductivity of ultradrawn polyethylene. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(23): 3359–3367.
[5] Shen S., Henry A., Tong J., Zheng R., Chen G., Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010, 5(4): 251–255.
[6] Cao B.-Y., Li Y.-W., Kong J., Chen H., Xu Y., Yung K.-L., Cai A., High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52(8): 1711–1715.
[7] Wang X., Ho V., Segalman R.A., Cahill D.G., Thermal conductivity of high-modulus polymer fibers. Macromolecules, 2013, 46(12): 4937–4943.
[8] Xu Y., Kraemer D., Song B., Jiang Z., Zhou J., Loomis J., Wang J., Li M., Ghasemi H., Huang X., Li X., Chen G., Nanostructured polymer films with metal-like thermal conductivity. Nature Communications, 2019, 10(1): 1771.
[9] Wang X., Kaviany M., Huang B., Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal. Nanoscale, 2017, 9(45): 18022–18031.
[10] Sperling L.H., Introduction to physical polymer science. Fourth ed., John Wiley & Sons, 2005. 
[11] Zhang T., Luo T., Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers. Journal of Applied Physics, 2012, 112(9): 094304.
[12] Sasikumar K., Keblinski P., Effect of chain conformation in the phonon transport across a Si-polyethylene single-molecule covalent junction. Journal of Applied Physics, 2011, 109(11): 114307.
[13] Duan X., Li Z., Liu J., Chen G., Li X., Roles of kink on the thermal transport in single polyethylene chains. Journal of Applied Physics, 2019, 125(16): 164303.
[14] Subramanyan H., Zhang W., He J., Kim K., Li X., Liu J., Role of angular bending freedom in regulating thermal transport in polymers. Journal of Applied Physics, 2019, 125(9): 095104.
[15] Ma H., Tian Z., Chain rotation significantly reduces thermal conductivity of single-chain polymers. Journal of Materials Research, 2018, 34(1): 126–133.
[16] Yamamoto O., Thermal conductivity of cross-linked polymers. Polymer Journal, 1971, 2: 509.
[17] Ruan K., Guo Y., Lu C., Shi X., Ma T., Zhang Y., Kong J., Gu J., Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research, 2021, article ID: 8438614.
[18] Fu C., Li Q., Lu J., Mateti S., Cai Q., Zeng X., Du G., Sun R., Chen Y., Xu J., Wong C.-P., Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 2018, 165: 322–330.
[19] Qiu L., Zhu N., Feng Y., Zhang X., Wang X., Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152: 119565.
[20] Guo H., Liu J., Wang Q., Liu M., Du C., Li B., Feng L., High thermal conductive poly(vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/ graphene three-dimensional network structure via reduced interfacial thermal resistance. Composites Science and Technology, 2019, 181: 107713.
[21] Huxtable S.T., Cahill D.G., Shenogin S., Xue L., Ozisik R., Barone P., Usrey M., Strano M.S., Siddons G., Shim M., Keblinski P., Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2(11): 731–734.
[22] Shenogin S., Xue L., Ozisik R., Keblinski P., Cahill D.G., Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. Journal of Applied Physics, 2004, 95(12): 8136–8144.
[23] Zhang J., Jiang C., Jiang D., Peng H.-X., Nano-engineering thermal transport performance of carbon nanotube networks with polymer intercalation: a molecular dynamics study. Physical Chemistry Chemical Physics, 2014, 16(9): 4378–4385.
[24] Boyer R.F., Miller R.L., Polymer chain stiffness parameter, σ, and cross-sectional area per chain. Macromolecules, 1977, 10(5): 1167–1169.
[25] Liu J., Yang R., Length-dependent thermal conductivity of single extended polymer chain. Physical Review B, 2012, 86(10): 104307.
[26] Alborzi M.S., Rajabpour A., Effect of overlapping junctions on the heat transfer between 2D layered composite material. International Communications in Heat and Mass Transfer, 2019, 109: 104348.
[27] Feng W., Yu X., Wang Y., Ma D., Sun Z., Deng C., Yang N., A cross-interface model for thermal transport across the interface between overlapped nanoribbons. Physical Chemistry Chemical Physics, 2019, 21(45): 25072– 25079.

文章导航

/